
Regex, Express, and Full-Stack Development (Week
11) - Learning Objectives

Assessment Structure

2 hours, 45 minutes

Mixture of multiple choice (5-10), and VSCode problems (20-30 specs).

For the coding section, be comfortable with creating an express application from scratch. The

projects from Thursday and Friday are good examples (on a smaller scale for an assessment

environment).

This includes connecting database material introduced last week, such as making your database,

initializing sequelize, creating migrations and models, adding seeders for your models, etc.

Be able to work within the express framework, creating the app, adding in middleware for csrf

protection, urlencoded body parsing, etc., making route handlers to respond to various requests

and pull in database information, etc.

Be able to display that information to the user using Pug templates, including csrf-protected forms

for post routes, iterating over database data to display content of records, etc.

Standard assessment procedures

You will be in an individual breakout room

Use a single monitor and share your screen

Only have open those resources needed to complete the assessment:

Zoom

VSCode

Browser with AAO and Progress Tracker (to ask questions)

Approved Resources for this assessment:

Express Docs: http://expressjs.com/

Pug Docs: http://pugjs.org/

csurf Docs: https://github.com/expressjs/csurf#readme

Sequelize Docs: https://sequelize.org/

Sequelize "Cheatsheet"

Regular Expressions and Node HTTP (W11D1) - Learning Objectives

Regular Expressions

�. Define the effect of the * operator and use it in a regular expression

�. Define the effect of the ? operator and use it in a regular expression

�. Define the effect of the + operator and use it in a regular expression

�. Define the effect of the . operator and use it in a regular expression

�. Define the effect of the ̂ operator and use it in a regular expression

�. Define the effect of the $ operator and use it in a regular expression

�. Define the effect of the [] bracket expression and use it in a regular expression

�. Define the effect of the - inside brackets and use it in a regular expression

�. Define the effect of the ̂ inside brackets and use it in a regular expression

Node HTTP (HTTP Full-Stack)

�. Identify the five parts of a URL

�. Identify at least three protocols handled by the browser

�. Use an IncomingMessage object to

access the headers sent by a client (like a Web browser) as part of the HTTP request

access the HTTP method of the request

access the path of the request

access and read the stream of content for requests that have a body

�. Use a ServerResponse object to

write the status code, message, and headers for an HTTP response

write the content of the body of the response

properly end the response to indicate to the client (like a Web browser) that all content has been written

Express and Pug Templates (W11D2) - Learning Objectives

Express

�. Send plain text responses for any HTTP request

�. Use pattern matching to match HTTP request paths to route handlers

�. Use the Pug template engine to generate HTML from Pug templates to send to the browser

�. Pass data to Pug templates to generate dynamic content

�. Use the Router class to modularize the definition of routes

Pug Templates

�. Declare HTML tags and their associated ids, classes, attributes, and content

�. Use conditional statements to determine whether or not to render a block

�. Use interpolation to mix static text and dynamic values in content and attributes

�. Use iteration to generate multiple blocks of HTML based on data provided to the template

HTML Forms (W11D3) - Learning Objectives

HTML Forms

�. Describe the interaction between the client and server when an HTML form is loaded into the browser,

the user submits it, and the server processes it

�. Create an HTML form using the Pug template engine

�. Use express to handle a form's POST request

�. Use the built-in express.urlencoded() middleware function to parse incoming request body form

data

�. Explain what data validation is and why it's necessary for the server to validate incoming data

�. Validate user-provided data from within an Express route handler function

�. Write a custom middleware function that validates user-provided data

�. Use the csurf middleware to embed a token value in forms to protect against Cross-Site Request Forgery

exploits

Full-Stack (Data-Driven Web Sites) (W11D4) - Learning Objectives

Data-Driven Web Sites

�. Use environment variables to specify configuration of or provide sensitive information for your code

�. Use the dotenv npm package to load environment variables defined in an .env file

�. Recall that Express cannot process unhandled Promise rejections from within route handler (or

middleware) functions

�. Use a Promise catch block or a try/catch statement with async/await to properly handle errors

thrown from within an asynchronous route handler (or middleware) function

�. Write a wrapper function to simplify catching errors thrown within asynchronous route handler (or

middleware) functions

�. Use the morgan npm package to log requests to the terminal window to assist with auditing and

debugging

�. Add support for the Bootstrap front-end component library to a Pug layout template

�. Install and configure Sequelize within an Express application.

�. Use Sequelize to test the connection to a database before starting the HTTP server on application

startup

��. Define a collection of routes (and views) that perform CRUD operations against a single resource using

Sequelize

��. Handle Sequelize validation errors when users are attempting to create or update data and display error

messages to the user so that they can resolve any data quality issues

��. Describe how an Express.js error handler function differs from middleware and route handler functions

��. Define a global Express.js error-handling function to catch and process unhandled errors

��. Define a middleware function to handle requests for unknown routes by returning a 404 NOT FOUND

error

