
Regex, Express, and Full-Stack Development (Week
11) - Learning Objectives

Assessment Structure

2 hours, 45 minutes

Mixture of multiple choice (5-10), and VSCode problems (20-30 specs).

For the coding section, be comfortable with creating an express application from scratch. The

projects from Thursday and Friday are good examples (on a smaller scale for an assessment

environment).

This includes connecting database material introduced last week, such as making your database,

initializing sequelize, creating migrations and models, adding seeders for your models, etc.

Be able to work within the express framework, creating the app, adding in middleware for csrf

protection, urlencoded body parsing, etc., making route handlers to respond to various requests

and pull in database information, etc.

Be able to display that information to the user using Pug templates, including csrf-protected forms

for post routes, iterating over database data to display content of records, etc.

Standard assessment procedures

You will be in an individual breakout room

Use a single monitor and share your screen

Only have open those resources needed to complete the assessment:

Zoom

VSCode

Browser with AAO and Progress Tracker (to ask questions)

Approved Resources for this assessment:

Express Docs: http://expressjs.com/

Pug Docs: http://pugjs.org/

csurf Docs: https://github.com/expressjs/csurf#readme

Sequelize Docs: https://sequelize.org/

Sequelize "Cheatsheet"

Regular Expressions and Node HTTP (W11D1) - Learning Objectives

Regular Expressions

�. Define the effect of the * operator and use it in a regular expression

�. Define the effect of the ? operator and use it in a regular expression

�. Define the effect of the + operator and use it in a regular expression

�. Define the effect of the . operator and use it in a regular expression

�. Define the effect of the ̂ operator and use it in a regular expression

�. Define the effect of the $ operator and use it in a regular expression

�. Define the effect of the [] bracket expression and use it in a regular expression

�. Define the effect of the - inside brackets and use it in a regular expression

�. Define the effect of the ̂ inside brackets and use it in a regular expression

Regex cheatsheet:

Regex Symbol Meaning

* zero or more

+ one or more

? zero or one

{m, n} from m to n number of characters

^ start of input

$ end of input

. any single character

\ escape a special character

[] match anything inside (or)

[a-z] or [0-9] range of characters

[^a-za-z] not those characters

() group these characters

\s whitespace

\d digit

\w wordy (letter, digit, or _)

\S not whitespace

\D not digit

\W not wordy

Using Regex in JavaScript - aka How Do I Apply This Stuff?

To create a regular expression we use / at the beginning and end of the pattern

const regex = /pattern/;

Two flags that we can use at the end of our regex to make them even more powerful are i and g
i indicates that we want our regex to be case-insensitive. We can accomplish the same thing by

expanding our pattern to include either case (/[Hh][Ii]/ instead of hi, for example), but this is
a convenient shorthand

g indicates that we want the regex to apply globally, meaning catch all matches, not just the first

one. This is especially useful when we use regex in a .replace() function, indicating we want to

change all matches.

const regex = /pattern/gi;

We can use a regex's .test() method to see if a match is found within a string argument.

const pattern = /pattern/;

console.log(pattern.test('this pattern is plaid')); // true
console.log(pattern.test('THIS PATTERN IS PLAID')); // false (case-
sensitive)

We can use a string's .replace() method and pass in regex as the first argument in order to replace

many instances of our matching pattern, no matter how complicated.

const s = 'An Advancing Aardvark';
const replaced = s.replace(/a/gi, 'X');
console.log(replaced); // Xn XdvXncing XXrdvXrk

The .replace() method can also take a callback function. The return value of the callback is what will

be replaced. This allows us to change the value that is being inserted dynamically.

let index = 0;
const s = 'An Advancing Aardvark';
const replaced = s.replace(/a/gi, (match) => {
 index += 1;
 return index;
});
console.log(replaced); // 1n 2dv3ncing 45rdv6rk

The .search() method of a string can take regex as an argument instead of a string, as well. It returns

the starting index of the match

let test = ['this', 'that', 'the other', 'and this?'];
let indices = test.map(function (e) {
 // search is returning the index that starts the match, or -1 if not
found
 return e.search(/(this)|(that)/); // [0, 0, -1, 4]
});
console.log(indices);

HTTP Full-Stack

�. Identify the five parts of a URL

 foo://example.com:8042/over/there?name=ferret#nose
 _/ ______________/_________/ _________/ __/
 | | | | |
scheme authority path query fragment

Scheme: Formerly known as "protocol", tells the browser what kind of connection you are making.
Examples would include http, https, file, ws, etc.
Authority: Normally the domain name, but may include the port, such as localhost:3000
Path: The first part of an HTTP request, they indicate the location within the application.
https://google.com/images has a path of /images. If no path is specified in the URL, it is
assumed to be /
Query: Extra information sent to the browser for processing the request. They are URL encoded key-

value pairs, with an = between key and value, and pairs concatenated by &. Special characters are
replaed with ASCII Code value, such as $ being replaced with %24.
Fragment: This part is not sent to the server; it's used by the browser to navigate to a specific section
of the page on load. Often seen when clicking a navigation link that takes to you a spot further down the

page. Changing this value will not reload the page

�. Identify at least three protocols handled by the browser

See above. http, https, and file have all been used in this course so far.

�. Use an IncomingMessage (typically called the req) object to

access the headers sent by a client (like a Web browser) as part of the HTTP request

const headers = req.headers;
// The headers are represented as a POJO with header names as keys
// { 'user-agent': 'curl/7.22.0',
// host: '127.0.0.1:8000',
// accept: '*/*' }

access the HTTP method of the request

const method = req.method;
// The headers are represented as a string such as 'GET' or 'POST'

access the path of the request

If we want to work with the full path we can use req.url

const path = req.url; // gives full path of request, such as '/images'

If we want to manipulate the path, we can use the path library, as well. This can be useful if we

want to check the extension name that is being requested.

const path = require('path');

const server = http.createServer(async (req, res) => {
 const ext = path.extname(req.url);

 if (ext === '.jpg') {
 // ...
 }
});

access and read the stream of content for requests that have a body

The body of a request comes in to the server in pieces, or "chunks". We'll see this a lot when we

make a POST request with a form. We can wait for the body to arrive and build it back up:

if (req.method === 'POST') {
 let bodyContent = '';
 for await (let chunk of req) {
 bodyContent += chunk;
 }

At this point the bodyContent is in the form

key1=encoded+value+1&key2=encoded+value+2, etc., where key/value pairs are joined
with =, pairs are separated with & and the values supplied use + for spaces and url encoding for

special characters. We can split and map over this string in order to convert it into a more user-

friendly POJO (this doesn't need to be memorized, but the process should make sense)

// bodyContent = 'my-input=In+this+box%3&another-
input=Yes%2C+this+box%2C+here.'

const keyValuePairs = bodyContent
 .split('&') // ['my-input=In+this+box%3', 'another-
input=Yes%2C+this+box%2C+here.']
 .map((keyValuePair) => keyValuePair.split('=')) // [['my-input',
'In+this+box%3'], ['another-input', 'Yes%2C+this+box%2C+here.']]
 .map(([key, value]) => [key, value.replace(/\+/g, ' ')]) // [['my-
input', 'In this box%3'], ['another-input', 'Yes%2C this box%2C
here.']]
 .map(([key, value]) => [key, decodeURIComponent(value)]) // [['my-
input', 'In this box?'], ['another-input', 'Yes, this box, here.']]
 .reduce((acc, [key, value]) => {
 acc[key] = value; // { 'my-input': 'In this box?', 'another-
input': 'Yes, this box, here.' }
 return acc; // We have to return acc to make sure we use the

updated value for the next iteration (adding in new key/value pairs
for each iteration)
 }, {}); // This {} is the starting value of acc (the accumulator).
It's allowing us to make a key/value pair for each inner array that we
are destructuring.

// keyValuePairs = { 'my-input': 'In this box?', 'another-input':
'Yes, this box, here.' }

�. Use a ServerResponse (typically called the res) object to

write the status code, message, and headers for an HTTP response

res.statusCode = 400; // We can set the statusCode directly through
assignment
res.statusMessage = "That password doesn't match"; // We can specify a
custom status message if it differs from the default related to the code
res.setHeader('Content-Type', 'text/plain'); // .setHeader(<<headerName>>,
<<headerContent>>)

write the content of the body of the response

// If we have a single string to pass as the content we can give it as the
argument directly to .end()
res.end('NOT FOUND');

// instead of using .end('message'), we can build up our response with
.write('messagePart')
for (let i = 1; i <= 10; i++) {
 res.write(`<p>This is p-tag #${i}</p>`);
}
res.end();

properly end the response to indicate to the client (like a Web browser) that all content has been written

As above, we need to include .end() to indicate that the content is written and can be sent back

to the client. If no arguments are given, it will send what has been built up with .write() (if

anything) as the content. If an argument is given, it will add it on before sending back that content.

(A common approach would be to build up a content variable in the javascript above, then pass

the built up result to end, with res.end(content))

Express and Pug Templates (W11D2) - Learning Objectives

Express

�. Send plain text responses for any HTTP request

In order to set up express in our application, we need to package with npm install express

With express installed, we can create a file that we will use to kick off our application. You'll often see this

as app.js or index.js at the top level of your server, but can be customized for the individual project.

In our app.js, we can require the express package and invoke it to create our server application:

const express = require('express');

// Create the Express app.
const app = express();

The app object that we created here is able to respond to incoming requests by defining routes with

these helpful functions:

get() responds to HTTP GET requests

post() responds to HTTP POST requests

put() responds to HTTP PUT requests

delete() responds to HTTP DELETE requests

Each of these functions accepts two arguments: the route as a string or regex, as well as a callback

function to define what we would like to do with the request. The format generally takes the form:

app.get({path}, (req, res) => {functionality})
To start our app listening for traffic on a specific port, we can us the app.listen({portNumber},
{successCallback}) function of our app object. We often use the callback just as a confirmation

that the app started up successfully.

const port = 8081;

app.listen(port, () => console.log(`Listening on port ${port}...`));

Now that the app is set up and we know how to create a route, responding with plain text is as easy as

using the res.send({text response}) method inside the route.

app.get('/', (req, res) => {
 res.send('Hello from Express!');
});

�. Use pattern matching to match HTTP request paths to route handlers

When defining routes, express offers us some flexibility in a couple different ways.

We are able to capture parameters from our routes and set up restrictions on what characters will

match these parameters.

// Capturing a parameter
app.get('/product/:id', (req, res) => {
 res.send(`Product ID: ${req.params.id}`);
});

// Putting a restriction on the parameter
// This route will only be used if what follows the /product/ is a
series of numbers (the + allows for multiple characters)
// We still capture it as a string, so it needs to be parsed into a
number if it is going to be used as such in our function
app.get('/product/:id(\\d+)', (req, res) => {
 const productId = parseInt(req.params.id, 10);
 res.send(`Product ID: ${productId}`);
});

We can set up a string pattern, which is a similar concept to regex. Express sees the special

characters in our string and is able to interpret patterns that match those characters.

The ? indicates that the previous character is optional (either 0 or 1 instances will occur)

The + indicates that the previous character may be repeated (at least 1, but possibly more

instances will occur)

The * indicates a wildcard. Any character and any number of characters will match.

// Within the string, we can use special characters to define
patterns, similar to regex.
// The pattern below can start will any base string (because of the
`*`), then must have `prod`, has an optional `u`, must have a `c`, has
at least one but possibly more `t` characters, then ends with an
optional `s`.
app.get('/*produ?ct+s?', (req, res) => {
 res.send('Products');
});

We can use actual regex to define a pattern.

// Regex allows us to be much more specific and complex with the
patterns that we are matching.
// Don't worry if this looks crazy! You would very rarely need to
construct anything so complex, this is just showing the possibilities.
app.get(/^\/((our-)?produ?ct{1,2}s?|productos)\/?$/i, (req, res) => {
 res.send('Products');
});

We can use any combination of these in an array to provide multiple options to match.

// Our array of options can have a mixture of the previous pattern
definitions, as well as multiple options of each.
app.get([/^\/(our-)?produ?ct{1,2}s?\/?$/i, '/productos'], (req, res)
=> {
 res.send('Products');
});

�. Use the Pug template engine to generate HTML from Pug templates to send to the browser

To use pug templates in our application we can install the package with npm install pug@^2.0.0 to

install pug 2.0.

With pug in our application, we can tell express to use it as the view engine:

app.set('view engine', 'pug');

Instead of rendering plain text with send, we can render a template by using
res.render({templateName}).
By default, express will look in a views directory for each template. We can set up this folder with a

{templateName}.pug file inside that will be rendered.

// Define a route.
app.all('*', (req, res) => {
 console.log(`Request method: ${req.method}`);
 console.log(`Request path: ${req.path}`);

 res.render('layout');
});

In that layout.pug file used in the above demo route, we can start setting up our template.

The names of tags we would like to create are written out as plain text.

To nest tags, we use indentation. Spaces vs. tabs do not matter as long as we are consistent in our

files.

The content of the tag can be written directly after the tag name

html
 head
 title My Awesome Title
 body
 h1 My Super Cool Heading

�. Pass data to Pug templates to generate dynamic content

The render() method on our app can also take in a second argument with an object definining

variables to make available within our Pug templates.

app.all('*', (req, res) => {
 console.log(`Request method: ${req.method}`);
 console.log(`Request path: ${req.path}`);

 res.render('layout', { title: 'Pug Template Syntax Sandbox', heading:

'Welcome to the Sandbox!' });
});

We would now be able to utilize the variables in the template file.

To use the value directly as content we can use the = operator for the element

If we want to interpolate the value within a larger string we can use Pug interpolation, which takes

the form My interpolated value is #{variableName}

html
 head
 title= title
 body
 h1 My heading says #{heading}

�. Use the Router class to modularize the definition of routes

In addition to defining routes directly on the app instance that we created, we can create multiple routers

from the express.Router() function and then utilize them from different base routes.

This functionality supports the modularity of our app. We'll often want to break up our routes into

categories, such as routes for our users vs routes for our tweets, instead of having all of our routes

defined in one location.

When we have an instance of the Router we can define routes with the same get(), post(), put(),
and delete() methods.

// In our main app.js file
const express = require('express');
const userRoutes = require('./routes/users.js'); // see following code
block
const tweetRoutes = require('./routes/tweets.js'); // see following code
block

const app = express();

app.use('/users', userRoutes);
app.use('/tweets', tweetRoutes);

const port = 4000;

app.listen(port, () => {
 console.log(`Listening on port ${port}...`);
});

// In a users route file
const express = require('express');

const router = express.Router();

router.get('/' (req, res) => {
 res.send('Hello from the base user route. We got here from /users/');
})

router.get('/:id' (req, res) => {
 res.send(`This is the page for user with id ${req.params.id}. We got
here from /users/:id`);
})

// other routes, such as editing a profile, deleting a user, etc.

module.exports = router;

// In a tweets route file
const express = require('express');

const router = express.Router();

router.get('/' (req, res) => {
 res.send('Hello from the base tweets route. We got here from /tweets/');
})

router.get('/:id' (req, res) => {
 res.send(`This is the page for tweet with id ${req.params.id}. We got
here from /tweets/:id`);
})

// other routes, such as posting a tweet, editing, deleting, etc.

module.exports = router;

Pug Templates

�. Declare HTML tags and their associated ids, classes, attributes, and content

To declare a tag, we can use the name of the tag directly in the pug file.

Nesting tags can be accomplished by indenting, with either spaces or tabs (just be consistent!)

Ids and classes can be added by attaching them to the tag name, just like they are selected in a CSS file.

Attributes can be given to a tag (like an href for an a tag, a src for an image, etc.) by supplying their

values in parentheses:

html
 head
 title My Page
 body
 div#main
 div.blue

 div.yellow
 a(href="http://google.com") Click here

�. Use conditional statements to determine whether or not to render a block

Inside of our Pug files we can include some logic, allowing our template to be even more dynamic.

An if statement can be used with the condition directly following. Anything indented will only be

included if the condition is true. We can similarly include an else as part of the condition:

if isEOD
 h2 Welcome back!
else
 h2 Keep coding!

if (time > 17)
 p See ya tomorrow!

�. Use interpolation to mix static text and dynamic values in content and attributes

Whenever we want to interpolate a value inside our pug template's content, we can use the #{} syntax.

It's important to distinguish this interpolation from JavaScript string interpolation. If we were to provide

strings within this template that we needed to interpolate within, such as an href attribute, we are

working with JavaScript at that point and would need to use our standard ${} within backticks to

interpolate those values:

res.render('layout', {
 title: 'Pug demo page',
 header: 'interpolation',
 route: 'tweets',
});

html
 head
 title= title
 style
 include style.css
 body
 h1 Pug does #{header}
 h2 Pug allows you to do many things
 ul
 li: a(href='http://google.com') This is a link to google.com
 li: a(href=`http://mycoolsite.com/${route}`) This is a link to my
cool site's #{route} route

�. Use iteration to generate multiple blocks of HTML based on data provided to the template

We can iterate through variables within our pug templates using the each ... in ... syntax.

// app.js
app.get('/pug', (req, res) => {
 res.render('eod', { colors: ['blue', 'red', 'green'] });
});

ul
 each color in colors
 li= color

HTML Forms (W11D3) - Learning Objectives

HTML Forms

�. Describe the interaction between the client and server when an HTML form is loaded into the browser,

the user submits it, and the server processes it

Below is an example of a form in regular HTML for our reference (not Pug).

<form action="/users" method="post">
 <label
 >Username:
 <input type="text" name="user[username]" />
 </label>
 <label
 >Email:
 <input type="email" name="user[email]" />
 </label>
 <label
 >Age:
 <input type="number" name="user[age]" />
 </label>
 <label
 >Password:
 <input type="password" name="user[password]" />
 </label>
 <input type="submit" value="Sign Up" />
</form>

The action attribute of the form element defines the url that the request is made to, ie what route our

request is going to hit on our server.

We can use multiple formats for this url:

absolute URL: A complete url path such as https://www.wellsfargo.com/transfers

relative URL: Just providing a route will send the request to the same domain that we are

one. Using /users when we are running on localhost in development will send the request

to localhost:3000/users

no URL - form will be sent to the same page(url) the form is present on

The method attribute defines the HTTP verb that will be used with the request ('GET' or 'POST')

If the POST method is used, form data is appended to the body of the HTTP request.

Only the GET and POST methods may be specified on the form. In order to do PUT, DELETE, or
other methods, we must use AJAX requests using the fetch API, for example.

The server receives a string that will be parsed in order to get the data as a list of key/value pairs.

The name attribute of each input is used as the key, with the value of the input used value in the

key/value pair.

We can create nested objects within the parsed data by providing a name format

outerKey[innerKey]. When this is parsed by express (see LO 3 and 4 below), we end up with

a a nested req.body. From the example above we would see:

console.log(req.body);
/*
{
 user: {
 username: _value_,
 email: _value_,
 age: _value_,
 password: _value_
 }
}
*/

This could be extra helpful if we have multiple categories of information in the form we are

submitting and want to have a way to easily distinguish between them.

�. Create an HTML form using the Pug template engine

We can translate the above form into Pug fairly directly.

Any attributes that we would include on an HTML tag would be included in parentheses in the template,

with nested tags being indented.

We've added some functionality in this example by including the hidden input for our csrf token (See LO

8) as well as providing values for our inputs. The values will help us retain content when a user sends an

incorrectly filled out form instead of sending back a blank form and losing their input. Notice no value is

used for password because we always want the user to type in that information.

form(method="post" action="/users")
 input(type="hidden" name="_csrf" value=csrfToken)
 label(for="user[username]") Username:
 input(type="username" id="username" name="username" value=username)
 label(for="user[email]") Email:
 input(type="email" id="email" name="email" value=email)
 label(for="user[age]") Age:
 input(type="age" id="age" name="user[age]" value=age)
 label(for="user[password]") Password:

 input(type="password" id="password" name="user[password]")
 input(type="submit" value="Sign Up")

�. Use express to handle a form's POST request

In the 'POST' route, we can check that our user's input passes all of our data validation checks, then, if

successful, create a new record for that user within our database. (In the project for today we just added

an object into an array to simulate this process.)

After we create our new record, we can redirect the user to another page. In this example, we are

redirecting to our root page, but we could have redirected to a user page, an index, a welcome page, etc.

app.get('/create', csrfProtection, (req, res, next) => {
 res.render('create', {
 title: 'Create a user',
 errors: [],
 csrfToken: req.csrfToken(),
 });
});

app.post(`/users`, csrfProtection, checkFields, async (req, res) => {
 const { username, email, age, password } = req.body.user;

 // Our errors attribute was created by our checkFields middleware
 // If we had errors, we're rendering the 'create' form again, passing
along the errors as well as the user data so that we can prepopulate those
fields with the values that were originally submitted
 if (req.errors.length >= 1) {
 res.render(`create`, {
 title: 'Create a user',
 errors: req.errors,
 username,
 email,
 age,
 csrfToken: req.csrfToken(),
 });
 return;
 }

 await User.create({ username, email, age, password });

 res.redirect(`/`);
});

�. Use the built-in express.urlencoded() middleware function to parse incoming request body form

data

The express middleware urlencoded comes with the express library, we just need to tell our app to use

it on all requests.

Invoking app.use({middlewareFunction}) will set up all requests to pass through this function.

The urlencoded function will decode the body of our form post requests, allowing our routes to access

the req.body property with each field as a property on this object.

The extended: true is a newer parsing library compared to leaving it off or false, which allows for

objects and arrays to be encoded. We'll always want to use this (you'll most likely see warnings in your

terminal if you leave it off).

app.use(
 express.urlencoded({
 extended: true,
 })
);

�. Explain what data validation is and why it's necessary for the server to validate incoming data

Data validation is the process of ensuring that the incoming data is correct.

This could mean anything related to the format or content of the data such as:

the type of data (is this actually a number?)

the value makes sense (is the age a positive number?)

length of content (is the password at least 8 characters long?)

etc.

Even though you could add add validations on the client side, client-side validations are not as secure

and can be circumvented. We could send a postman request to our server's routes, for example, and not

utilize our client-side application at all.

Because client-side validations can be circumvented, it's necessary to implement server-side data

validations as well.

Handling bad request data in our route handlers allows us to return 400 level messages with appropriate

messaging to allow the user to correct their bad request.

If we didn't have data validations on our server and allowed the bad data to go all the way to the

database, the system would return a the generic "500: Internal Server Error", which is not helpful for the

user.

�. Validate user-provided data from within an Express route handler function

Before we attempt to create a record for this new user, we can verify that the information submitted by

the user exists, is in a valid format, etc.

If anything is outside of our expectation, we can handle the request differently (rendering the form again,

displaying errors, etc.) as opposed to if the information is valid (where we would typically want to redirect

the user to a new page).

app.post('/create', csrfProtection, async (req, res) => {
 const { username, email, age, password, confirmedPassword } = req.body;
 const errors = [];

 if (!username) {
 errors.push('Please provide a username.');
 }

 if (!email) {
 errors.push('Please provide an email.');
 }

 if (!age) {
 errors.push('Please provide an age.');
 }

 const ageAsNum = Number.parseInt(age, 10);

 if (age && (ageAsNum < 0 || ageAsNum > 120)) {
 errors.push('Please provide an age between 0 and 120');
 }

 if (!password) {
 errors.push('Please provide a password.');
 }

 if (password && password !== confirmedPassword) {
 errors.push('The provided values for the password and password
confirmation fields did not match.');
 }

 if (errors.length > 0) {
 res.render('create', {
 title: 'Create a user',
 username,
 email,
 age,
 csrfToken: req.csrfToken(),
 errors,
 });
 return;
 }

 const newUser = await User.create({ username, email, age, password });
 res.redirect(`/user/${newUser.id}`);
});

�. Write a custom middleware function that validates user-provided data

Separating out the validation of our inputs into its own middleware allows us to reuse this functionality for

multiple routes.

When writing middleware, we take in the request, response, and a reference to the next function, which

express is going to utilize to set up our chain of functions to invoke.

Our middleware can interact with and modify our request and response objects however we like. For

validating user input, it's convenient for us to be able to add in custom error messages to our request

object if any of the data does not match our expectations. That way our routes can check to see if any of

these errors occurred and respond appropriately.

After implementing the functionality of our middleware, we invoke the next function in order to continue

the middleware chain. I like to think of this as similar to invoking the resolve function of a Promise

when the functionality we are implementing is complete.

const validationMiddleware = (req, res, next) => {
 const { username, email, age, password, confirmedPassword } = req.body;
 const ageAsNum = Number.parseInt(age, 10);
 const errors = [];

 if (!username) {
 errors.push('Please provide a username.');
 }

 if (!email) {
 errors.push('Please provide an email.');
 }

 if (!age) {
 errors.push('Please provide an age.');
 }

 if (age && (ageAsNum < 0 || ageAsNum > 120)) {
 errors.push('Please provide an age between 0 and 120');
 }

 if (!password) {
 errors.push('Please provide a password.');
 }

 if (password && password !== confirmedPassword) {
 errors.push('The provided values for the password and password
confirmation fields did not match.');
 }

 req.errors = errors;
 next();
};

With this function written, we can pass it as middleware to any route that requires it.

With the validations being run, we can then interact with the req.errors array that our middleware

created.

app.post('/create', csrfProtection, validationMiddleware, async (req, res)
=> {
 const { firstName, lastName, email, password, confirmedPassword } =
req.body;
 const errors = req.errors;

 if (errors.length > 0) {
 res.render('create', {
 title: 'Create a user',
 username,

 email,
 age,
 csrfToken: req.csrfToken(),
 errors,
 });
 return;
 }

 await User.create({ username, email, age, password });
 res.redirect('/');
});

�. Use the csurf middleware to embed a token value in forms to protect against Cross-Site Request Forgery

exploits

To set up CSRF protection, we want to utilize two tools: the csurf library and the cookie-parser
library (since we'll use cookies for our csrf protection implementation)

Once pulled in to our main file, we can create a csrfProtection middleware as well as tell our app to use

the cookie parser:

app.use(cookieParser());
const csrfProtection = csrf({ cookie: true });

Creating the middleware function is not enough to implement csrf protection. Anywhere that requires us

to create or submit forms we need to utilize the middleware within the route. We do this by passing it as

an argument to our app.get or app.post function calls.

When creating our forms, we want to be able to provide a _csrf input field, hidden from the user.

The value that we supply to this field is obtained from invoking our req.csrfToken() function that

was created for us from the middleware.

The middleware is also supplied to the 'POST' routes that respond to these submissions in order to

check that the token was actually created by our application.

const express = require('express');
const cookieParser = require('cookie-parser');
const csrf = require('csurf');

const { User } = require('./models');

const app = express();

const port = process.env.PORT || 3000;

const csrfProtection = csrf({ cookie: true });

app.use(cookieParser());
app.use(express.urlencoded({ extended: true }));
app.set('view engine', 'pug');

app.get('/create', csrfProtection, (req, res, next) => {
 res.render('create', {
 title: 'Create a user',
 messages: [],
 csrfToken: req.csrfToken(),
 });
});

app.post('/create', csrfProtection, validationMiddleware, async (req, res)
=> {
 const { username, email, password } = req.body;
 const errors = req.errors;

 if (errors.length > 0) {
 res.render('create', {
 title: 'Create a user',
 username,
 email,
 age,
 csrfToken: req.csrfToken(),
 errors,
 });
 return;
 }

 await User.create({ username, email, age, password });
 res.redirect('/');
});

The Pug files that create thes forms can simply create a hidden input field:

// Other content before the form
form(action='/create' method='post')
 input(type='hidden' name="_csrf" value=csrfToken)
 div(class="form-group")
 label(for='username') Username:
 input(id='username' class="form-control" name='username'
value=username type='text')
 // Other form fields
 div
 input(type='submit' value="Create User" class='btn btn-primary')

Full-Stack (Data-Driven Web Sites) (W11D4) - Learning Objectives

Data-Driven Web Sites

�. Use environment variables to specify configuration of or provide sensitive information for your code

We can specify environment variables in the command line or script by setting them before the

command we are running:

PORT=8080 node app.js in the terminal

"start": "PORT=8080 node app.js" in our scripts

In our app, we can use process.env.VARIABLE_NAME to access any environment variables that have

been set.

We can also create a .env file to store all of our variables in one location. In order to access these

variables, we use the dotenv package (see LO #2)

PORT=8080
DB_NAME=cool_app
DB_USER=cool_app_user
DB_PASSWORD=cool_app_user_password

�. Use the dotenv npm package to load environment variables defined in an .env file

Adding the dotenv package to our project gives us three ways to load environment variables.

�. In our app, we can require the dotenv package and invoke its configure method. Any point

after this configuration will have access to environment variables defined in .env:

require('dotenv').config();

�. When starting our application, either in the terminal directly or in a script, we can use node or

nodemon's -r flag to indicate we want to require a package at the very start. By requiring

dotenv/config, we can omit the line above from our application code.

"start": "nodemon -r dotenv/config app.js"
�. Similar to how sequelize-cli allows us to run sequelize commands in the command line, we

can install dotenv-cli to our project with npm install dotenv-cli and then use dotenv
before our commands that need to utilize these variables:

npx dotenv sequelize-cli db:migrate

�. Recall that Express cannot process unhandled Promise rejections from within route handler (or

middleware) functions.

If an error is thrown in a synchronous route handler or middleware, it will be caught by express error

handlers and an error message will be sent back to the client.

For asynchronous functions, unhandled rejected promises (errors not caught by a catch block or

catch method in a promise chain) will not be handled by the error handlers. The server will not send a

response back and the client's browser will hang. We need to catch the error and pass it along to the

error handlers in order for the standard error-handling functionality to occur.

�. Use a Promise catch block or a try/catch statement with async/await to properly handle errors

thrown from within an asynchronous route handler (or middleware) function

To catch asynchronous errors, we've seen that we can use a try/catch block when using the

async/await syntax, or we can chain a .catch on to a Promise directly.

With express, we can indicate that an error has occurred by invoking the next function with an

argument. The argument is the error that has occurred from our asynchronous code.

Using our try/catch syntax:

app.get('*', async (req, res, next) => {
 // we specify an async function and capture the 'next' parameter
 try {
 const result = await someAsynchronousFunction();
 res.send(result);
 } catch (err) {
 // If an error occurs in the above try block, it is captured as err
 next(err); // The err variable that we captured is passed to next so
that error handlers can interact with it
 }
});

Using our Promise chains:

app.get('*', async (req, res, next) => {
 someAsyncFunction()
 .then(() => {
 // Assume some command is here that throws an error
 })
 .catch((err) => {
 // We catch it here to make express happy
 next(err);
 });
});

�. Write a wrapper function to simplify catching errors thrown within asynchronous route handler (or

middleware) functions

The process of wrapping our asynchronous handlers in try/catch blocks is so common that we will

often create a helper wrapper function in order to DRY up our code. It also makes the route handlers that

we create look more similar to the synchronous ones that we are used to:

const asyncHandler = (handler) => {
 return (req, res, next) => {
 return handler(req, res, next).catch((err) => next(err));
 };
};

// We are utilizing ES6 implicit returns of single-line => functions
to shrink this to one line.
// This can be a little confusing, so you'll still often see the above
implementatin.
// THIS IS THE SAME AS THE ABOVE FUNCTION! Just a different structure.
const asyncHandler = (handler) => (req, res, next) => handler(req,
res, next).catch(next);

// By wrapping our normal route handler in the custom asyncHandler
that we created, we don't have to worry about writing try/catch blocks
or chaining .catch onto promises for all of our different routes
app.get(
 '*',
 asyncHandler(async (req, res) => {
 // our asyncHandler is returning the function that invokes our
handler defined here, with the addition of the catch method and
invocation of next(err) if an error occurs
 const result = await someAsynchronousFunction();
 res.send(result);
 })
);

�. Use the morgan npm package to log requests to the terminal window to assist with auditing and

debugging

Adding the morgan package lets us log the requests that hit our server. The dev format specifies the

HTTP method/verb, the path, status code, response time, and content length of the response.

npm install morgan

const morgan = require('morgan');
app.use(morgan('dev'));

�. Add support for the Bootstrap front-end component library to a Pug layout template

Adding in the Bootstrap stylesheet and script to our template allows us to use classes that Bootstrap has

defined for us with default styles. These are lines that you would copy over from Bootstrap template, not

things that you would memorize https://getbootstrap.com/docs/4.4/getting-

started/introduction/#starter-template

The important takeaway is knowing that these lines are what are allowing us to use the classes Bootstrap

has defined for us.

 doctype html
 html
 head
 meta(charset='utf-8')
 meta(name='viewport' content='width=device-width, initial-scale=1,
shrink-to-fit=no')

 // The following line is importing the bootstrap css file
 link(rel='stylesheet'
href='https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min
.css' integrity='sha384-
Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh'
crossorigin='anonymous')

 title Reading List - #{title}

 body
 nav(class='navbar navbar-expand-lg navbar-dark bg-primary')
 a(class='navbar-brand' href='/') Reading List
 .container
 h2(class='py-4') #{title}
 block content

 // The following lines are importing the bootstrap js files
 script(src='https://code.jquery.com/jquery-3.4.1.slim.min.js'
integrity='sha384-
J6qa4849blE2+poT4WnyKhv5vZF5SrPo0iEjwBvKU7imGFAV0wwj1yYfoRSJoZ+n'
crossorigin='anonymous')

script(src='https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.
min.js' integrity='sha384-
Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo'
crossorigin='anonymous')

script(src='https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/js/bootstra
p.min.js' integrity='sha384-
wfSDF2E50Y2D1uUdj0O3uMBJnjuUD4Ih7YwaYd1iqfktj0Uod8GCExl3Og8ifwB6'
crossorigin='anonymous')

�. Install and configure Sequelize within an Express application.

We need to install packages associated with sequelize and postgres:

npm install sequelize@^5.0.0 pg@^8.0.0
npm install sequelize-cli@^5.0.0 --save-dev

Creating a .sequelizerc file at the root of our app allows us to specify the paths to where our config

file should be read from and where the directories for models, migrations, and seeds should be created:

const path = require('path');

module.exports = {
 config: path.resolve('config', 'database.js'),
 'models-path': path.resolve('db', 'models'),
 'seeders-path': path.resolve('db', 'seeders'),
 'migrations-path': path.resolve('db', 'migrations'),
};

Run our sequelize initialization. This reads from .sequelizerc to see if we are overwriting any of the

default config values, then generates the directories and config file.

npx sequelize init

Create our database and user in psql

CREATE USER reading_list_app WITH PASSWORD 'strongpassword' CREATEDB;
CREATE DATABASE reading_list WITH OWNER reading_list_app;

Add environment variables to .env

DB_USERNAME=reading_list_app
DB_PASSWORD=strongpassword
DB_DATABASE=reading_list
DB_HOST=localhost

If we are using a config module, add these new variables in:

module.exports = {
 environment: process.env.NODE_ENV || 'development',
 port: process.env.PORT || 8080,
 db: {
 username: process.env.DB_USERNAME,
 password: process.env.DB_PASSWORD,
 database: process.env.DB_DATABASE,
 host: process.env.DB_HOST,
 },
};

In the config file generated by sequelize (we specified ./config/database.js in our example), set

up the configuration to point to these values for any environment that we need:

const { username, password, database, host } = require('./index').db;

module.exports = {
 development: {
 username,
 password,
 database,
 host,
 dialect: 'postgres',
 seederStorage: 'sequelize',
 },
};

If we didn't have a config module, we could use the environment variables directly:

module.exports = {
 development: {
 username: process.env.DB_USERNAME,

 password: process.env.DB_PASSWORD,
 database: process.env.DB_DATABASE,
 host: process.env.DB_HOST,
 dialect: 'postgres',
 seederStorage: 'sequelize',
 },
};

�. Use Sequelize to test the connection to a database before starting the HTTP server on application

startup

To test our connection, we get a reference to our database through the models directory that was

created for us. We can call .authenticate on the instance of sequelize that is exported from this

module.

#!/usr/bin/env node
// This file is being run to kick off our server. The app is being
imported separately. If these concerns were in the same file, the
process of importing the db and invoking authenticate would remain the
same.

const { port } = require('../config');

const app = require('../app');
const db = require('../db/models');

// Check the database connection before starting the app.
db.sequelize
 .authenticate()
 .then(() => {
 console.log('Database connection success! Sequelize is ready to
use...');

 // Start listening for connections.
 app.listen(port, () => console.log(`Listening on port
${port}...`));
 })
 .catch((err) => {
 console.log('Database connection failure.');
 console.error(err);
 });

��. Define a collection of routes (and views) that perform CRUD operations against a single resource using

Sequelize

Before creating routes and views, we should generate models, migrations, and seeds in order to have

data to work with. This is the same process as working with sequelize previously.

�. Generate our model and migration

npx sequelize model:generate --name Book --attributes "title:string,
author:string, releaseDate:dateonly, pageCount:integer,
publisher:string"

�. Update the model and migration files to include constraints such as character liimts, allowNull,
and unique: true, how to drop the table in the migration, etc.

�. Apply the migrations to our database. Remember to include dotenv to include the environment

variables. This is needed because db:migrate has to connect to our database, and the

credential information is stored in our environment variables.

npx dotenv sequelize db:migrate
�. Generate a seed file

npx sequelize seed:generate --name test-data
�. Update the seed file to include records that we want to add to the database, as well as what to

delete if we want to undo the seed.

�. Apply the seed file. We need to prepend dotenv for the same reasons as our migrations.

npx dotenv sequelize db:seed:all

Now that we have our database created and seeded, we can proceed with making our routes.

In the file that we are creating our routes, require the models directory.

const db = require('./db/models');

If we have any routes that need to post data (creating, updating, destroying records), we need to provide

csrf protection. Add the csurf and cookie-parser packages to our project. Within our app, indicate

that we are using cookieParser and parsing our requests:

const cookieParser = require('cookie-parser');

app.use(cookieParser());
app.use(express.urlencoded({ extended: false }));
// We can also use the bodyParser library instead of express's
urlencoded function
// app.use(bodyParser.urlencoded({ extended: false }))

Our routes need to have access to the csrfProtection middleware that comes from the csurf package

we added.

const csrf = require('csurf');

const csrfProtection = csrf({ cookie: true });

In our routes, set up asynchronous route handlers and await the query to our database. We can then

pass the results to our views.

Getting an index of records

router.get(
 '/',
 asyncHandler(async (req, res) => {
 const books = await db.Book.findAll({ order: [['title',
'ASC']] });
 res.render('book-list', { title: 'Books', books });
 })
);

Getting a single records

router.get(
 '/book/:id(\\d+)',
 asyncHandler(async (req, res) => {
 const bookId = parseInt(req.params.id, 10); // converting the
string into an integer
 const book = await db.Book.findByPk(bookId); // get a
reference to our Book instance
 res.render('book-display', { title: 'Book Display', book });
 })
);

Posting to create a record

router.post(
 '/book/add',
 csrfProtection,
 bookValidators,
 asyncHandler(async (req, res) => {
 // destructure the fields of the book from the request body
 const { title, author, releaseDate, pageCount, publisher } =
req.body;

 // build the instance of the book. We're doing this before
validation redirection because our
 const book = db.Book.build({
 title,
 author,
 releaseDate,
 pageCount,
 publisher,
 });

 const validatorErrors = validationResult(req);

 if (validatorErrors.isEmpty()) {
 await book.save();
 res.redirect('/');

 } else {
 const errors = validatorErrors.array().map((error) =>
error.msg);
 res.render('book-add', {
 title: 'Add Book',
 book,
 errors,
 csrfToken: req.csrfToken(),
 });
 }
 })
);

Editing a record

router.post(
 '/book/edit/:id(\\d+)',
 csrfProtection,
 bookValidators,
 asyncHandler(async (req, res) => {
 const bookId = parseInt(req.params.id, 10); // converting the
string into an integer
 const bookToUpdate = await db.Book.findByPk(bookId); // get a
reference to our Book instance

 const { title, author, releaseDate, pageCount, publisher } =
req.body;

 // we extracted and then repackaged the relevent terms from
the request's body
 const book = {
 title,
 author,
 releaseDate,
 pageCount,
 publisher,
 };

 // The validation results can be accessed by invoking the
function with our request
 const validatorErrors = validationResult(req);

 // If the fields all passed validation, validatorErrors will
be an empty array
 // This means that we can update the book and send the user
back to the main page
 if (validatorErrors.isEmpty()) {
 await bookToUpdate.update(book);
 res.redirect('/');
 // If some fields did not pass the validator, we want to
keep them on the form page
 // and display the message associated with each error

 } else {
 // Convert the error objects into just their message
strings
 const errors = validatorErrors.array().map((error) =>
error.msg);
 res.render('book-edit', {
 title: 'Edit Book',
 book: { ...book, bookId },
 errors,
 csrfToken: req.csrfToken(),
 });
 }
 })
);

Deleting a record

router.post(
 '/book/delete/:id(\\d+)',
 csrfProtection,
 asyncHandler(async (req, res) => {
 // 1. Convert the id in the route from a string to an integer
 // 2. Get a reference to the book that matches this id
 // 3. Destroy the book record
 const bookId = parseInt(req.params.id, 10);
 const book = await db.Book.findByPk(bookId);
 await book.destroy();

 // Instead of finding and then deleting an instance, we could
combine these into one method on the class
 // db.Book.destroy({ where: { id: bookId } })

 // Redirect to the main page
 res.redirect('/');
 })
);

��. Handle Sequelize validation errors when users are attempting to create or update data and display error

messages to the user so that they can resolve any data quality issues

We've seen two ways to implement data validation on the server. First is through sequelize model

validations, and the second is from the express-validator package.

For sequelize validations, we add a validate key on the model for each field we would like to validate:

module.exports = (sequelize, DataTypes) => {
 const Book = sequelize.define(
 'Book',
 {

 title: {
 type: DataTypes.STRING,
 allowNull: false,
 validate: {
 notNull: {
 msg: 'Please provide a value for Title',
 },
 notEmpty: {
 msg: 'Please provide a value for Title',
 },
 len: {
 args: [0, 255],
 msg: 'Title must not be more than 255 characters long',
 },
 },
 },
 author: {
 type: DataTypes.STRING(100),
 allowNull: false,
 validate: {
 notNull: {
 msg: 'Please provide a value for Author',
 },
 notEmpty: {
 msg: 'Please provide a value for Author',
 },
 len: {
 args: [0, 100],
 msg: 'Author must not be more than 100 characters long',
 },
 },
 },
 releaseDate: {
 type: DataTypes.DATEONLY,
 allowNull: false,
 validate: {
 notNull: {
 msg: 'Please provide a value for Release Date',
 },
 isDate: {
 msg: 'Please provide a valid date for Release Date',
 },
 },
 },
 pageCount: {
 type: DataTypes.INTEGER,
 allowNull: false,
 validate: {
 notNull: {
 msg: 'Please provide a value for Page Count',
 },
 isInt: {
 msg: 'Please provide a valid integer for Page Count',
 },

 },
 },
 publisher: {
 type: DataTypes.STRING(100),
 allowNull: false,
 validate: {
 notNull: {
 msg: 'Please provide a value for Publisher',
 },
 notEmpty: {
 msg: 'Please provide a value for Publisher',
 },
 len: {
 args: [0, 100],
 msg: 'Publisher must not be more than 100 characters
long',
 },
 },
 },
 },
 {}
);
 Book.associate = function (models) {
 // associations can be defined here
 };
 return Book;
};

With these validations in place, when we attempt to save a new instance (Book in this case), we will

result in an error being thrown. This error will have a name property equal to

SequelizeValidationError. We can implement a try/catch block to see if this error occurred,

and if it did, render our form again with the error messages:

router.post(
 '/book/add',
 csrfProtection,
 asyncHandler(async (req, res, next) => {
 const { title, author, releaseDate, pageCount, publisher } =
req.body;

 const book = db.Book.build({
 title,
 author,
 releaseDate,
 pageCount,
 publisher,
 });

 try {
 await book.save();
 res.redirect('/');

 } catch (err) {
 if (err.name === 'SequelizeValidationError') {
 const errors = err.errors.map((error) => error.message);
 res.render('book-add', {
 title: 'Add Book',
 book,
 errors,
 csrfToken: req.csrfToken(),
 });
 } else {
 next(err);
 }
 }
 })
);

We can also implement validations using the express-validator package, which we can use as

middleware in our routes.

We extract a reference to the check and validationResult functions from the express-
validator library:

const { check, validationResult } = require('express-validator');

We can set up a group of validations using an array. Each individual validation invokes check with the

field that we are validating, then chains on the specific validations and messages we want to associate

with that field:

const bookValidators = [
 check('title')
 .exists({ checkFalsy: true })
 .withMessage('Please provide a value for Title')
 .isLength({ max: 255 })
 .withMessage('Title must not be more than 255 characters long'),
 check('author')
 .exists({ checkFalsy: true })
 .withMessage('Please provide a value for Author')
 .isLength({ max: 100 })
 .withMessage('Author must not be more than 100 characters long'),
 check('releaseDate')
 .exists({ checkFalsy: true })
 .withMessage('Please provide a value for Release Date')
 .isISO8601()
 .withMessage('Please provide a valid date for Release Date'),
 check('pageCount')
 .exists({ checkFalsy: true })
 .withMessage('Please provide a value for Page Count')
 .isInt({ min: 0 })
 .withMessage('Please provide a valid integer for Page Count'),

 check('publisher')
 .exists({ checkFalsy: true })
 .withMessage('Please provide a value for Publisher')
 .isLength({ max: 100 })
 .withMessage('Publisher must not be more than 100 characters
long'),
];

With these validations set up, we can pass the array of middleware to any route that needs to validate

the input. Inside the route we can invoke validationResult with the request object to get access to

an array of any errors that occurred with the validations. From there, we can determine if we need to

render the route as normal if the the array is empty, or if we need to display errors to the user because of

the failed validations.

// This is the same route as above, repeated for convenience
// Notice the bookValidators array passed in as middleware
router.post(
 '/book/add',
 csrfProtection,
 bookValidators,
 asyncHandler(async (req, res) => {
 const { title, author, releaseDate, pageCount, publisher } =
req.body;

 const book = db.Book.build({
 title,
 author,
 releaseDate,
 pageCount,
 publisher,
 });

 // The results of the validations are being captured by
validatorErrors. If all of the validations passed, it will be an empty
array.
 const validatorErrors = validationResult(req);

 if (validatorErrors.isEmpty()) {
 // No errors occurred, so save the new book
 await book.save();
 res.redirect('/');
 } else {
 // Validations failed. Extract the `msg` from each error and
pass the array to the form template so that it can iterate over them
and display them to the user
 const errors = validatorErrors.array().map((error) =>
error.msg);
 res.render('book-add', {
 title: 'Add Book',
 book,
 errors,

 csrfToken: req.csrfToken(),
 });
 }
 })
);

��. Describe how an Express.js error handler function differs from middleware and route handler functions

Error handlers have a very similar syntax to middleware and route handlers that we create. In addition to

the req, res, and next arguments that we captured, we also capture the error (typically err) as the
first argument to the handler.

Error handlers are invoked whenever an error occurs in a synchronous route handler or if next is invoked

with and argument.

When either of these occur, express will continue parsing the file to see if we have any handlers defined

below the route to take care of the error. This is why it's important to have our middleware up top so that

it is used before routes are encountered, then our routes, then our error handlers at the bottom.

Just like middleware, we can chain multiple error handlers on to each other. In order to pass control off to

the next error handler, we simply invoke next(err), making sure to pass the error in as the argument.
If we don't have any custom error handlers, express has a default one that will respond to the client with

a status of 500 and, if in development, display the error's stack trace. It's important to note that if an

asynchronous function is rejected and not caught, the error handlers will not be triggered, causing the

server to hang and no response sent back to the client.

��. Define a global Express.js error-handling function to catch and process unhandled errors

Our handler uses app.use() with a callback that takes in err, req, res, and next.
If the err object has a status key set on it, we set our res's status to that value, otherwise we use a

generic 500 to indicate an internal server error occurred.

We render a custom error template with the error information. In the example below, we set up different

displays based on whether we are in a production environment or not. If we are, we simply state that an

error occurred. The idea is that the end-user doesn't need to know the inner workings of our server, just

that we messed up. If we aren't in production, we also pass the specific error message and stack trace to

the template in order to render it to the page. This allows us to debug our code in development.

// (middleware and routes defined above)

// Generic error handler.
app.use((err, req, res, next) => {
 res.status(err.status || 500);
 const isProduction = process.env.NODE_ENV === 'production';
 res.render('error', {
 title: 'Server Error',
 message: isProduction ? 'An error occurred!' : err.message,
 stack: isProduction ? null : err.stack,
 });
});

��. Define a middleware function to handle requests for unknown routes by returning a 404 NOT FOUND

error

If a request comes in for a route that does not match anything that we have created, we can capture the

request and throw a specific error for it.

After all of our routes are defined, we use app.use just like our middleware up above. This ensures that

the request passes through this handler if it makes it this far without encountering an error.

In this function we create an error, set the status key of the error to 404 (for later use in the error

handler), then invoke our error-handling chain by calling next(err) with the error we just made:

// Catch unhandled requests and forward to error handler.
app.use((req, res, next) => {
 const err = new Error("The requested page couldn't be found.");
 err.status = 404;
 next(err);
});

Before our generic error handler, we can define a specific 404 error handler in order to generate a

custom page. If an error passes through this handler, we check to see if its status is 404. If the error was

created because of the missing route, then this will be the case. When that occurs, we set our

response's status to 404 and render our custom template.

// Error handler for 404 errors.
app.use((err, req, res, next) => {
 if (err.status === 404) {
 res.status(404);
 res.render('page-not-found', {
 title: 'Page Not Found',
 });
 } else {
 next(err);
 }
});

If the error didn't have a status of 404 (if the error happened inside one of our other routes or

middleware), then we simply invoked next(err) to pass it along to the next error handler in the chain.

