
REDUX



Discovered
Redux was created by Dan
Abramov around June 2015.
It was inspired by Facebook's
Flux. Redux got popular very
quickly because of its
simplicity, small size (only 2
KB) and great documentation

smashingmagazine.com



What is Redux
1. Redux is a pattern and library for managing and updating

application state, using events called "actions".
2. It serves as a centralized store for state that needs to be

used across your entire application, with rules ensuring that
the state can only be updated in a predictable fashion.

3. Based on Flux which is an application architecture that used
by Facebook for building client-side web applications. It
complements React's composable view components by
utilizing a unidirectional data flow.



What does it do?
1. Redux helps you manage "global" state - state that is

needed across many parts of your application.
2. Redux guides you towards writing code that is

predictable and testable
3. The patterns and tools provided by Redux make it

easier to reason about how your state is being update



Why Use It?
What are the tradeoffs:

1. It helps you deal with shared state management
2. There's more concepts to learn
3. Theres's more code to write.
4. It also adds some indirection to your code,
5. It asks you to follow certain restrictions.



Multiple Subjects Need the Same State



Is Redux part of React?



Always use Redux?



So when?

1. You have large amounts of application state that are
needed in many places in the app

2. The app state is updated frequently over time
3. The logic to update that state may be complex
4. The app has a medium or large-sized codebase, and

might be worked on by many people



* Not all apps need Redux.
* Take some time to think about the kind of app you

are building,
* Decide what tools would be best to help solve the

problems you're working on.



React No Redux



Redux Flow



Store
The center of every Redux application is the store.

A "store" is a container that holds your application's global
state. Its data structure is a JavaScript object with a few

special functions and abilities that make it different than a
plain object literal.



Store Rules

You must never directly modify or change the state that is kept inside the

Redux store

The only way to trigger an update to the state is to create a plain action object

that describes "something that happened in the application", and then

dispatch the action to the store to tell it what happened.

When an action is dispatched, the store runs the root reducer function, and

lets it calculate the new state based on the old state and the action

Finally, the store notifies subscribers that the state has been updated so the

UI can be updated with the new data.





Creating a Store

1. store.getState()
2. store.dispatch()
3. store.subscribe()



Actions

Actions are plain JavaScript objects that have a type field.
You can think of an action as an event that tells the store

to do something based on its type



Action Examples

Add a new todo entry based on the text the user
entered
Toggle the completed status of a todo
Select a color category for a todo
Delete a todo
Mark all todos as completed
Clear all completed todos
Choose a different "completed" filter value
Add a new color filter
Remove a color filter

(action verbs)



Actions MUST always have
a type key,value pair

We can optionally have a payload property to deliver extra data
needed to describe what's happening. This could be a number,

a string, or an object with multiple fields inside. It is not
required to be called payload

Actions should contain the smallest amount of
information needed to describe what

happened



Action Creators
It is another common convention that, instead of creating
action objects inline in the places where you dispatch the

actions, you would create functions generating them.



Why Action Creators?

1. Action creators let you decouple additional logic around
dispatching an action, from the actual components emitting
those actions.

2.  when the application is under heavy development and the
requirements change often you don't have to search the
whole application to make changes



Reducers

Reducers are functions that take the current state and an
action as arguments, and return a new state result. In other

words, (state, action) => newState



That one root reducer function is responsible for handling all of
the actions that are dispatched, and calculating what the

entire new state result should be every time.

One Single Reducer
A Redux app really only has one reducer function:

the "root reducer" function that you will pass to
createStore later on.



Reducers must always follow some special rules:

They should only calculate the new state value based on

the state and action arguments

They are not allowed to modify the existing state.

Instead, they must make immutable updates, by copying

the existing state and making changes to the copied

values.

PURE FUNCTIONS...They must not do any asynchronous

logic or produce "side effects"



Side Effect???



Logging a value to the console

Saving a file

Setting an async timer

Making an AJAX HTTP request

Modifying some state that exists outside of a

function, or mutating arguments to a function

Generating random numbers or unique random IDs

(such as Math.random() or Date.now())

A "side effect" is any change to state or behavior that
can be seen outside of returning a value from a function.

Some common kinds of side effects are things like:



Any function that follows these rules is
also known as a "pure" function, even if
it's not specifically written as a reducer

function.



LETS CODE


