
Week 18 Study Guide

Table of Contents

Python Unit Testing Objectives
Use the built-in unittest package to write unit tests
Install and use the pytest package to write unit tests

Python Environment Management Objectives
Describe pip
Describe virtualenv
Demonstrate how to use pipenv to initialize a project and install dependencies
Demonstrate how to run a Python program using pipenv using its shell
Demonstrate how to run a Python program using pipenv using the run command
Describe how modules and packages are found and loaded from import statements
First some definitions:
Python Path
Exporting
The Rules

Using the import statement
Using the python command line interpreter
Documentation on import

Describe the purpose of and when init.py runs
Describe the purpose of and when main.py runs

Flask Objectives
Setup a new Flask project
Run a simple Flask web application on your computer
Utilize basic configuration on a Flask project
Create a static route in Flask
Create a parameterized route in Flask
Use decorators run code before and after requests
Identify the "static" route
Use WTForms to define and render forms in Flask
Use WTForms to validate data in a POST with the built-in validators
CSRF
Use the following basic field types in WTForms
Create a Flask Blueprint
Register the Flask Blueprint with the Flask application
Use the Flask Blueprint to make routes
Configure and use sessions in Flask
Use a Jinja template as return for a Flask route with render_template
Add variables to a Jinja template with {{ }}
Use include to share template content in Jinja

Psycopg Objectives
Connect to a PostgreSQL RDBMS using Psycopg
Open a "cursor" to perform data operations
Use the with keyword to clean up connections and database cursors
Use results performed from executing a SELECT statement on existing database entities
Use parameterized SQL statements to insert, select, update, and delete data
Specify what type Psycopg will convert the following PostgreSQL types into:

SQLAlchemy Objectives
Describe how to create an "engine" that you will use to connect to a PostgreSQL database instance
Describe how the with engine.connect() as connection: block establishes and cleans up a connection to the database
Describe how to create a database session from an engine
Create a mapping for SQLAlchemy to use to tie together a class and a table in the database
Mappings

Mappings with plain SQLAlchemy
Mappings with Flask-SQLAlchemy

Relationships
One-to-Many
Many-to-Many

On backpopulates
Add data to the database, both single entities as well as related data
Using session with Flask-SQLAlchemy
Update data in the database
Delete data from the database (including cascades!)
Know how to use and specify the "delete-orphan" cascading strategy
Describe the purpose of a Query object
Use a Session object to query the database using a model
With plain SQLAlchemy
With Flask SQLAlchemy
How to order your results
Use the filter method to find just what you want
Use instance methods on the Query object to return a list or single item
Use the count method to … count
Query objects with criteria on dependant objects
Lazily load objects
Eagerly load objects
Install the Flask-SQLAlchemy extension to use with Flask
Configure SQLAlchemy using Flask-SQLAlchemy
Use the convenience functions and objects Flask-SQLAlchemy provides you to use in your code

Alembic Learning Objectives
Install Alembic into your project
Configure Alembic to talk to your database and not have silly migration names
Add environment variable to env.py
Making better migration file names
Control Alembic's ability to migrate your database
Generating a migration (revision)
Running a migration (upgrading to a revision)
Rolling back a migration (downgrading to a revision)
Rolling back all migrations (downgrading to base)
Viewing your migration history (revision history)

Reason about the way Alembic orders your migrations; and,
Handle branching and merging concerns
Configuring a Flask application to use Alembic;
Run commands to manage your database through the flask command; and,
Instead of alembic init…
Check the help for the rest of the commands, which are the same as Alembic
Autogenerate migrations from your models!
Instead of alembic migrate…

Python Unit Testing Objectives

Use the built-in unittest package to write unit tests

unittest
Built in to python
Requires that you build a class that inherits from unittest.TestCase
test functions must start with test_
Has a collection of assertion functions

Install and use the pytest package to write unit tests

pytest
Has better output than unittest
Just requires a test file full of test methods
Can also run unittest based tests
Uses python built in assert keyword

Python Environment Management Objectives

pyenv
Installs versions of python inside your home directory in a .pyenv folder
Allows you to easily switch between python versions with the pyenv global
command.
Closest Node.JS equivalennt would be nvm

Describe pip

pip
Installs Python packages into python's library path folders.
Can use a requirements.txt file to install a set of packages.
Can be used standalone but we used it mostly by levaraging pipenv which uses
it under the hood
Closest Node.JS equivalent would be npm install -g

Describe virtualenv

virtualenv
Creates a virtual installation of python. Uses symbolic links and adjustments
to certain environment variables to isolate python packages from one project
to another.
Can be used standalone but we used it mostly by leveraging pipenv which uses
it under the hood
No Node.JS equivalent

Demonstrate how to use pipenv to initialize a project and install dependencies

pipenv
Combines pip and virtualenv into one command.
Creates a virtual environment using virtualenv
Uses pip internally to install packages listed in a Pipfile .
Locks packages to specific versions with a Pipfile.lock .
Uses an environment variable named PIPENV_VENV_IN_PROJECT . When set to 1
it causes pipenv to create the virtualenv inside your project directory in
a folder named .venv instead of in your home directory
Will read a .env file and populate the environment variables inside the
 virtualenv

Can generate a requirements.txt file for use with regular pip
Closest Node.JS equivalent would be npm

Demonstrate how to run a Python program using pipenv using its shell

pipenv shell

This will start a new shell inside the virtual environment.

Then you can run python programs and they will run with the right set of packages and environment variables

python someprogram.py

When you are finished running commands in the virtual environment don't forget
to exit the shell by issuing the exit command, or using Control-D.

Demonstrate how to run a Python program using pipenv using the run command

If you just need to run a single command inside the virtual environment
you can use the pipenv run command.

https://docs.python.org/3.8/library/unittest.html
https://docs.pytest.org/en/latest/
https://docs.python.org/3/reference/simple_stmts.html#grammar-token-assert-stmt
https://github.com/pyenv/pyenv
https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
https://pipenv.pypa.io/en/latest/

pipenv run python someprogram.py

Describe how modules and packages are found and loaded from import statements

First some definitions:

Module : a single .py file or a directory with a __init__.py file can be
considered a module

Package : a collection of modules and submodules in a directory

Submodule : a python module inside a sub directory of a module

Python Path

The Python Path is a list of directories python looks for modules in.

When you import a module, python searches these directories for a file module or directory module (with a init.py file in it) that matches the name you are
trying to import.

You can inspect the python path from python by printing sys.path

You can add directories to the python path by setting the PYTHON_PATH
environment variable.

Luckily we have tools like virtualenv and pipenv which means we do not have
to worry as much about setting the Python path manually.

Exporting

Inside a python script, any variables, functions or classes are automatically
exported and can be imported by name.

If you want to control which things get exported from a python module you can
set the variable __all__ equal to a list of strings representing the things
to export.

The Rules

Using the import statement

When you import a .py file as a module, it searches sys.path for a file with
that name and runs that file.
When you import a directory as a module, it also searches sys.path for a
directory with that name and runs the __init__.py contained in that directory.

Using the python command line interpreter

When you run a .py file it runs that file
When you run a directory it runs __main__.py
When you run a directory with the -m option, it searches sys.path for the module and runs both the __init__.py and the __main__.py

Most of the time we'll use __init__.py not __main__.py when we build our own
modules.

Documentation on import

Import System
Import Statement

Describe the purpose of and when init.py runs

When you run a directory with the -m option, or when you import a directory,
the __init__.py file executes. The purpose of __init__.py to be able to
build python packages and subdivide the packages into multiple sub-modules.

Describe the purpose of and when main.py runs

When you run a directory as a regular python program (not with -m) the
 __main__.py file is executed. The purpose of __main__.py is to allow us
to execute a directory as if it was a python program.

Flask Objectives

Setup a new Flask project

Flask is a python based web application server. It is a backend framework
similar to Express.js

First, you should install Flask into a virtual environment

pipenv install flask

Create a python script to start your application. This might be app.py or
another script which imports an app/__init.py module.

This is the bare minimum needed to make Flask application:

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/simple_stmts.html#import

from flask import Flask
app = Flask(__name__)

Flask requires that you set an environment variable called FLASK_APP before
it will run. It needs to be set to the name of your flask application script
or module. You could put this into a .env file and let pipenv load it
or use the python-dotenv module to load a .flaskenv file.

Often you might use the .flaskenv file to load environment variables like
 FLASK_APP and checking it into source control, and reserve the .env file for
secret information like passwords or database configurations.

Run a simple Flask web application on your computer

Once you have your application setup, you can just run it with flask.

pipenv run flask run

Utilize basic configuration on a Flask project

You can use the app.config dictionary to hold Flask configuration values.

An even better way to setup your flask app is to create a python module with a
configuration class in it. This class just needs properties for each
configuration variable. Then you can import the class, and use the from_object()
method to load it into the app's config dictionary.

config.py

class Config:
 SOME_CONFIG_VARIABLE = 'Some value'

app.py
Import the config class
from config import Config

app = Flask(__name__)

Load the config into Flask.
app.config.from_object(Config)

You can access any config variables in your flask app by just referencing
them on the app.config dictionary.

app.config['SOME_CONFIG_VARIABLE']

Create a static route in Flask

A static route is one that just routes to a path without any parameters.

Examples
@app.route('/')
def index():
 """Put code here to execute when `/` is visited"""
 pass

@app.route('/somepath')
def some_path():
 """Put code here to execute when `/somepath` is visited"""
 pass

Create a parameterized route in Flask

A parameterized route uses <> characters to declare that part of a path
should be a parameter.

the <id> parameter will be captured and passed into the function as the first
argument
@app.route('/item/<id>')
def item(id):
 return f'<h1>Item {id}</h1>'

You can also specify the type of the parameter by prepending it with the type
and a colon
@app.route('/item/<int:id>')
def item(id):
 return f'<h1>Item {id}</h1>'

Use decorators run code before and after requests

The @app.before_request and @app.after_request happen before and after
every request to the server. Use them to do any initialization or cleanup
you need to happen on each request

@app.before_request
def before_request_function():

 print("before_request is running")

@app.after_request
def after_request_function(response):
 print("after_request is running")
 return response

 @app.before_first_request only happens once before the very first request
to the server

@app.before_first_request
def before_first_function():
 print("before_first_request happens once")

Identify the "static" route

Don't confuse this with declaring a static route above. This is a special
built in route you don't have to define at all.

If you create a folder called static then any requests to /static on your
server will cause flask to serve up the files contained in this folder.

http://localhost:5000/static/styles/main.css

.
├── Pipfile
├── Pipfile.lock
├── app <- directory where Flask is created
│ ├── __init__.py <- file in which Flask is created
│ ├── routes.py
│ ├── static <- static files served from here
│ │ └── styles
│ │ └── main.css
│ └── templates
│ └── main.html
└── app_loader.py

Use WTForms to define and render forms in Flask

WTForms is a python package that allows you to easily generate forms and form
fields. Flask-WTF is a companion python package that allows you to parse
POST data from a form and render the form fields.

You define your form as a class that inherits from the FlaskForm base class.

from flask_wtf import FlaskForm

class SampleForm(FlaskForm):

Then inside the class use WTForm fields on properties of the class.

class SampleForm(FlaskForm):
 name = StringField('Name')

In your route, you can instantiate an instance of your form and then pass
it to a view to be rendered.

from app.sample_form import SampleForm

Create an instance of our form
form = SampleForm()

And pass it to the view template
return render_template('form.html', form=form)

Inside the view template, you can access the fields from the form to
output HTML for the form and it's fields.

<form action="" method="post" novalidate>
 {{ form.csrf_token }}
 <p>
 {{ form.name.label }}
 {{ form.name(size=32) }}
 </p>
 <p>{{ form.submit() }}</p>
</form>

The calls inside of the {{ }} will output HTML.

Because of some special python magic (the call and str methods on
FlaskForm), you can just use the properties without calling them, or call them with extra parameters, and both will work!

Passing extra keyword parameters to the field instances will add HTML attributes
for those parameters. However, because class is a reserved word in Python,
you will have to use class_ when you want to add a CSS class.

 form.name(size=32, class_='name')

Use WTForms to validate data in a POST with the built-in validators

To validate a form with Flask-WTF you can call the validate_on_submit method
on your form instance. This must be done inside of a route that handles POST
requests.

@app.route('/submit', methods=['POST'])
def handle_form_submit():
 if form.validate_on_submit():
 # Do something with the form data.
 # and return something
 return
 # You can put code here to handle what happens when
 # the form fails validation, like redirecting or rendering
 # the form again.
 return

It should be noted that validate_on_submit automatically reads the incoming
parameters from the request object in Flask, so there's no reason to import it
or use it manually.

CSRF

To protect against Cross-Site Request Forgery attacks, Flask-Wtf automatically
generates and checks CSRF tokens. However we must add one of these two fields
in our form in order to print out the CSRF token.

This one prints out ALL the hidden fields including the CSRF that are
defined on the form class
{{ form.hidden_tag() }

or

While this one only prints out the CSRF token hidden field
{{ form.csrf_token() }}

Use the following basic field types in WTForms

You use these by creating a class property on your class which inherits from
FlaskForm

class MyForm(FlaskForm):
 field1 = StringField()

BooleanField
DateField
DateTimeField
DecimalField
FileField
MultipleFileField
FloatField
IntegerField
PasswordField
RadioField
SelectField
SelectMultipleField
SubmitField
StringField
TextAreaField

Check the documentation on the specific parameters you must pass each type of
field.

WTForms Field Documentation

Create a Flask Blueprint

A Flask Blueprint is a way to modularize our routes.

In a new module, import Blueprint and create one like this:

admin.py
from flask import Blueprint

admin_bp = Blueprint('admin', __name__, url_prefix='/admin')

Register the Flask Blueprint with the Flask application

Then import it into your main Flask app file
and register it so Flask knows about the routes contained within.

from admin import admin_bp

app = Flask()

app.register_blueprint(admin_bp)

https://wtforms.readthedocs.io/en/2.3.x/fields/#module-wtforms.fields

Use the Flask Blueprint to make routes

Inside the blueprint you can add routes, like you normally would, just you use
the blueprint instance instead of using app

@admin_bp.route('/', methods=('GET', 'POST'))
def admin_index():
 return

Configure and use sessions in Flask

You must set a SECRET_KEY property in your flask config for sessions to work.

You can import session from flask.

from flask import Flask, session

Then simply use session to store things you want to be available later

To set something in the session
session['key'] = value
To get something from the session
session.get('key')
to remove something from the session
session.pop('key')

Use a Jinja template as return for a Flask route with render_template

Use the render_template method to render the template into a string,
and then return it from your route. You can give it the HTML file and keyword
arguments that will be accessible as variables inside the template.

@app.route('/')
def index():
 return render_template('index.html', sitename='My Sample')

Add variables to a Jinja template with {{ }}

Then inside our HTML we can access the key

<title>{{ sitename }}</title>

Check the Jinja2 docs for all the things you can do in Jinja2 templates.

Use include to share template content in Jinja

Just use the include directive to include another html inside a jinja template.

{% include 'file.html' %}

Psycopg Objectives

Connect to a PostgreSQL RDBMS using Psycopg

import psycopg2

CONNECTION_PARAMETERS = {
 'dbname': 'psycopg_test_db',
 'user': 'psycopg_test_user',
 'password': 'password',
}

with psycopg2.connect(**CONNECTION_PARAMETERS) as conn:
 print(conn.get_dsn_parameters())

Open a "cursor" to perform data operations

Use the with keyword to clean up connections and database cursors

import psycopg2

CONNECTION_PARAMETERS = {
 'dbname': 'psycopg_test_db',
 'user': 'psycopg_test_user',
 'password': 'password',
}

with psycopg2.connect(**CONNECTION_PARAMETERS) as conn:
 print(conn.get_dsn_parameters())

Use results performed from executing a SELECT statement on existing database entities

https://jinja.palletsprojects.com/en/2.11.x/templates/

with psycopg2.connect(**CONNECTION_PARAMETERS) as conn:
 with conn.cursor() as curs:
 curs.execute('SELECT manu_year, make, model FROM cars;')
 cars = curs.fetchall()
 for car in cars:
 print(car) # (1993, 'Mazda', 'Rx7')

Use parameterized SQL statements to insert, select, update, and delete data

def print_all_cars():
 with psycopg2.connect(**CONNECTION_PARAMETERS) as conn:
 with conn.cursor() as curs:
 curs.execute('SELECT manu_year, make, model, owner_id FROM cars;')
 cars = curs.fetchall()
 for car in cars:
 print(car)

print_all_cars()
Output:
(1993, 'Mazda', 'Rx7', 1)
...additional cars

Specify what type Psycopg will convert the following PostgreSQL types into:

PostgreSQL Python

NULL None

bool bool

double float

integer long

varchar str

text unicode

date date

SQLAlchemy Objectives

Describe how to create an "engine" that you will use to connect to a PostgreSQL database instance

Note: When using Flask-SQLAlchemy you don't have to do this

from sqlalchemy import create_engine

engine = create_engine("postgresql://sqlalchemy_test:password@localhost/sqlalchemy_test")

Describe how the with engine.connect() as connection: block establishes and cleans up a connection to the database

Note: When using Flask-SQLAlchemy you don't have to do this

from sqlalchemy import create_engine

db_url = "postgresql://sqlalchemy_test:password@localhost/sqlalchemy_test"
engine = create_engine(db_url)

with engine.connect() as connection:
 result = connection.execute("""
 SELECT o.first_name, o.last_name, p.name
 FROM owners o
 JOIN ponies p ON (o.id = p.owner_id)
 """)
 for row in result:
 print(row["first_name"], row["last_name"], "owns", row["name"])

engine.dispose()

Describe how to create a database session from an engine

Note: When using Flask-SQLAlchemy you don't have to do this

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

db_url = "postgresql://sqlalchemy_test:password@localhost/sqlalchemy_test"
engine = create_engine(db_url)

SessionFactory = sessionmaker(bind=engine)

session = SessionFactory()

Do stuff with the session

engine.dispose()

Create a mapping for SQLAlchemy to use to tie together a class and a table in the database

Mappings

Mappings with plain SQLAlchemy

With just SQLAlchemy we inherit from Base and we have to import all the
schema objects and types manually.

ponies.py
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.schema import Column, ForeignKey
from sqlalchemy.types import Integer, String

Base = declarative_base()

class Pony(Base):
 __tablename__ = 'ponies'

 id = Column(Integer, primary_key=True)
 name = Column(String(255))
 birth_year = Column(Integer)
 breed = Column(String(255))
 owner_id = Column(Integer, ForeignKey("owners.id"))

Mappings with Flask-SQLAlchemy

When using Flask-SQLAlchemy we inherit from db.Model instead of Base
and we can use all the schema objects and types because Flask-SQLAlchemy
attaches them to the db instance. So we just prefix them with db.

owner.py

from .models import db

class Pony(db.Model):
 __tablename__ = 'ponies'

 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(255))
 birth_year = db.Column(db.Integer)
 breed = db.Column(db.String(255))
 owner_id = db.Column(db.Integer, db.ForeignKey("owners.id"))

Relationships

One-to-Many

Just create the proper foreign key columns on the models, and then
define the relationships. (Remember Flask-SQLAlchemy will need to preface most of these objects with db.)

Remember the rule of thumb. The "Many" always has the foreign key on it.

The one
class Owner(db.Model):
 __tablename__ = "owners"

 id = db.Column(db.Integer, primary_key=True)
 first_name = db.Column(db.String(255))
 last_name = db.Column(db.String(255))
 email = db.Column(db.String(255))

 # ponies belong to an owner
 ponies = db.relationship("Pony", back_populates="owner")

The Many
class Pony(db.Model):
 __tablename__ = "ponies"

 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(255))
 birth_year = db.Column(Integer)
 breed = db.Column(db.String(255))
 # The pony contains an owner_id foreign key
 owner_id = db.Column(db.Integer, db.ForeignKey("owners.id"))

 # An owner has many ponies
 owner = db.relationship("Owner", back_populates="ponies")

Many-to-Many

Remember that a Many-to-Many relationship is really two One-to-Many relationships
with a join table in the middle.

You must create a Table() object and not a model for your join table.

We define the foreign keys on our join table, which joins the Ponies
to thier Handlers.
pony_handlers = db.Table(
 "pony_handlers",
 db.Column("pony_id", db.ForeignKey("ponies.id"), primary_key=True),
 db.Column("handler_id", db.ForeignKey("handlers.id"), primary_key=True)

Then setup the relationships on each Model making sure to define a "secondary"
keyword argument is set to the table we just made.

 # Inside the Pony class...
 handlers = db.relationship("Handler",
 secondary=pony_handlers,
 back_populates="ponies")

 # Inside the Handler class...
 ponies = db.relationship("Pony",
 secondary=pony_handlers,
 back_populates="handlers")

On backpopulates

If you leave out the backpopulates parameter, then when you create an object and add related data, the opposite relationship won't be populated. For instance assume
we have an Owner instance and we add a Pony instance to it.

owner.ponies.append(pony)

If we do not have backpopulates set to the owner propery of the Pony
class, then if you try to look at the owner of the pony like this:

print(pony.owner) # Returns None

Then it will still be None. If you set backpopulates to the owner, then this
will get populates and stay in sync.

IMPORTANT: backpopulates just controls what happens with the objects BEFORE
we commit them to the database.

It's always a good idea to setup your backpopulates properly so you aren't
surprised.

Add data to the database, both single entities as well as related data

you = Owner(first_name="your first name",
 last_name="your last name",
 email="your email")

your_pony = Pony(name="your pony's name",
 birth_year=2020,
 breed="whatever you want",
 owner=you)

Note, id will be None until we commit
print(you.id) # > None
print(your_pony.id) # > None

session.add(you) # Connects you and your_pony objects
session.commit() # Saves data to the database

After commiting the ids exist
print(you.id) # > 4 (or whatever the new id is)
print(your_pony.id) # > 4 (or whatever the new id is)

Using session with Flask-SQLAlchemy

We use this exactly the same as above but we get the session from the db instance.

db.session.add(you) # Connects you and your_pony objects
db.session.commit() # Saves data to the database

IMPORTANT don't confuse this session with the Flask session. This is a
database session while flask session is the browser session.

Update data in the database

print(your_pony.birth_year) # > 2020

Updating is just like setting a property
your_pony.birth_year = 2019

The pony instance updates immediately
print(your_pony.birth_year) # > 2019

but the database doesn't update until we commit!
session.commit()

print(your_pony.birth_year) # > 2019

Delete data from the database (including cascades!)

Know how to use and specify the "delete-orphan" cascading strategy

Just passing the owner instance to delete, deletes it, but....
db.session.delete(you)
It doesn't actually change the database until you commit!
db.session.commit()

class Owner(db.Model):
 __tablename__ = 'owners'

 id = db.Column(db.Integer, primary_key=True)
 first_name = db.Column(db.String(255))
 last_name = db.Column(db.String(255))
 email = db.Column(db.String(255))

 # This is a relationship between Ponies and Owner.
 # We have set it to cascase and delete orphans so
 # when we delete an owner all the ponies related to
 # that owner will be deleted
 ponies = db.relationship("Pony",
 back_populates="owner",
 cascade="all, delete-orphan")

Describe the purpose of a Query object

When you use SQLAlchemy's querying API, you're not actually immediately executing SQL against the database. Instead, all of the specifications that you add to the query are saved up into a single
object that you then use to have SQL executed against the database. This allows you to make decisions at runtime about how you want to apply filters to the query. This will become clearer as you
read about how to query and apply filters in the following sections. The important thing to note is that a Query object will not actually do anything with the database unless you explicitly tell it to do
something.

Use a Session object to query the database using a model

With plain SQLAlchemy

pony_query = session.query(Pony)
print(pony_query)

pony_id_4_query = session.query(Pony).get(4)

With Flask SQLAlchemy

Flask SQLAlchemy attaches the session.query to the Model directly.

So you can re-write any call to session.query as <Model>.query .

This plain SQLAlchemy query:
pony = session.query(Pony).get(4);

Can be re-written as:
pony = Pony.query.get(4)

How to order your results

owner_query = Owner.query(Owner.first_name, Owner.last_name)
 .order_by(Owner.last_name)
print(owner_query)

Use the filter method to find just what you want

pony_query = Pony.query.filter(Pony.name.like("%u%"))

pony_query = Pony.query
 .filter(Pony.name.ilike("%u%"))
 .filter(Pony.birth_year < 2015)

Use instance methods on the Query object to return a list or single item

 all - returns a list
 first - returns a single object
 one - returns a single object or raises an exception
 one_or_none - returns a single object or None

ponies = Pony.query.all()
for pony in ponies:
 print(pony.name)

Use the count method to … count

pony_query = Pony.query
print(pony_query.count())

Query objects with criteria on dependant objects

hirzai_owners = Owner.query \
 .join(Pony) \
 .filter(Pony.breed == "Hirzai")

for owner in hirzai_owners:
 print(owner.first_name, owner.last_name)

Lazily load objects

for owner in Owner.query:
 print(owner.first_name, owner.last_name)
 for pony in owner.ponies:
 print(pony.name)

Eagerly load objects

owners_and_ponies = Owner.query.options(joinedload(Owner.ponies))

for owner in owners_and_ponies:
 print(owner.first_name, owner.last_name)
 for pony in owner.ponies:
 print(pony.name)

Install the Flask-SQLAlchemy extension to use with Flask

pipenv install Flask psycopg2-binary \
 SQLAlchemy Flask-SQLAlchemy

Configure SQLAlchemy using Flask-SQLAlchemy

Create a SQLALCHEMYDATABASE_URI property in your Flask app config

Then you can pass your app to SQLAlchemy for super simple apps

from config import Config
from flask import Flask
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config.from_object(Config)
We are creating the DB in app.py after creating the app.
So we can just pass our app to SQLAlchemy
db = SQLAlchemy(app)

However, if you've defined your db object BEFORE your app is created in another module, you must use the init_app method on db to configure Flask-SQLAlchemy

models.py
from flask_sqlalchemy import SQLAlchemy

notice we create the db instance without passing it app
db = SQLAlchemy()

app.py
from flask import Flask
from .config import Configuration
The act of importing this creates the db instance
from .models import db

We create our app here
app = Flask(__name__)
app.config.from_object(Configuration)
We use init_app and pass it the app
db.init_app(app)

Use the convenience functions and objects Flask-SQLAlchemy provides you to use in your code

Flask-SQLAlchemy adds the query object to every instance of a Model.

Pony.query.get(4)

It has some Flask specific things such as get_or_404 , which just throws a
404 error if there's no Pony coming back from the database. There is also a similar first_or_404 method.

Pony.query.get_or_404(4)

Flask-SQLAlchemy also adds the session object to the db instance.

db.session.add(owner)
db.session.commit()

Alembic Learning Objectives

Install Alembic into your project

pipenv install alembic
pipenv run alembic init <directory-name>

Configure Alembic to talk to your database and not have silly migration names

Add environment variable to env.py

Import the os module

import os

before run_migrations_offline add this line

config.set_main_option("sqlalchemy.url", os.environ.get("DATABASE_URL"))

Making better migration file names

You can set this in alembic.ini so your migration files will have dates in the names.

file_template = %%(year)d%%(month).2d%%(day).2d_%%(hour).2d%%(minute).2d%%(second).2d_%%(slug)s

Control Alembic's ability to migrate your database

Generating a migration (revision)

pipenv run alembic revision -m "create the owners table"

Running a migration (upgrading to a revision)

pipenv run alembic upgrade head

Rolling back a migration (downgrading to a revision)

pipenv run alembic downgrade <revision hash>

Rolling back all migrations (downgrading to base)

pipenv run alembic downgrade base

Viewing your migration history (revision history)

pipenv run alembic history

Reason about the way Alembic orders your migrations; and,

Alembic treats migrations like a linked list. It does not use the dates in the
filenames to decide which migrations to run and which order they get run.

Instead each revision has a revision hash, and each revision has a 'down_revision'
property that points at the previous revision. (except for the first revision which of course will have it's down_revision set to None)

revision = 'ddbf30c38165'
down_revision = 'e363377eb6d7'

Handle branching and merging concerns

If two teammates both commit new revisions, then you will end up with a conflict
in the down_revisions. Your revision linked list might look like this:

 -- ae1027a6acf (Team A's most recent)
 /
<-- 1975ea83b712 <--
 \
 -- 27c6a30d7c24 (Team B's most recent)

and you'll get an error like this:

FAILED: Multiple head revisions are present for given argument 'head';
please specify a specific target revision, '<branchname>@head' to
narrow to a specific head, or 'heads' for all heads

you can solve this with a merge specifying the two revisions

pipenv run alembic merge -m "merge contracts and devices" ae1027 27c6a

Configuring a Flask application to use Alembic;

pipenv install alembic Flask-Migrate

app/__init__.py
from app.models import db
from flask import Flask
from config import Config
We have to import flask_migrate
from flask_migrate import Migrate
import os

app = Flask(__name__)
Load our config, make sure you set DATABASE_URL as flask migrate
uses it as well
app.config.from_object(Config)
db.init_app(app)
And we have to do this to configure Flask Migrate. It needs to know about
both our app and our db object
Migrate(app, db)

Run commands to manage your database through the flask command; and,

When we use Flask-Migrate we run the commands through the flask command.

Instead of alembic init…

pipenv run flask db init

Check the help for the rest of the commands, which are the same as Alembic

pipenv run flask db --help

Usage: flask db [OPTIONS] COMMAND [ARGS]...

 Perform database migrations.

Options:
 --help Show this message and exit.

Commands:
 branches Show current branch points
 current Display the current revision for each database.
 downgrade Revert to a previous version
 edit Edit a revision file
 heads Show current available heads in the script directory
 history List changeset scripts in chronological order.
 init Creates a new migration repository.
 merge Merge two revisions together, creating a new revision file
 migrate Autogenerate a new revision file (Alias for 'revision...
 revision Create a new revision file.
 show Show the revision denoted by the given symbol.
 stamp 'stamp' the revision table with the given revision; don't run...
 upgrade Upgrade to a later version

Autogenerate migrations from your models!

Instead of alembic migrate…

pipenv run flask db migrate -m "create owners table"

flask db migrate does magic now, it reads your models and tries to
autogenerate the migration files based on the model.

IMPORTANT always check the autogenerated migration though, as there's only
so much flask migrate can do and it might not get everything perfectly correct, but it is a time saver!

