Async Quiz

function boo
console.log('boop!"’

console.log('fizz'
setTimeout 1000

console.log('buzz’

In the code above, what order will the messages be printed in?

fizz, buzz, boop!
fizz, boop!, buzz
boop!, buzz, fizz

boop!, fizz, buzz

EXPLANATION

setTimeoutdoes not block execution so 'buzz' will be printed before boois called.

function boo
console.log('boop!"’

console.log('fizz'
setTimeout 0
console.log('buzz’

In the code above, what order will the messages be printed in?

fizz, buzz, boop!
fizz, boop!, buzz
boop!, buzz, fizz

boop!, fizz, buzz

EXPLANATION

setTimeoutdoes not block execution even if a delay time of 0 is provided.

function far
console.log('farm!'’

function boo
console.log('boop!"’
far

console.log('fizz'
setTimeout 1000
console.log('buzz’

In the code above, what order will the messages be printed in?

fizz, buzz, boop!, farm!
boop!, buzz, fizz, farm!
farm!, boop!, fizz, buzz

fizz, buzz, farm!, boop!

EXPLANATION

faris called synchronously inside of boo, so 'farm!’ will be printed right after 'boop!'

function far

console.log('farm!'’

function boo
console.log('boop!"’
setTimeout 1000
console.log('boop!"’

setTimeout 1000
console.log('buzz'

In the code above, what order will the messages be printed in?

farm!, boop!, boop!, buzz
buzz, boop!, boop!, farm!
boop!, farm!, boop!, buzz

buzz, boop!, farm!, boop!

EXPLANATION

Since faris called asynchronously, it will not block execution of the second 'boop!"

function asyncy
setTimeout 1000
console.log("async"

function greet

console.log("hello!"

asyncy

In the code above, what order will the messages be printed in?

async, hello!

hello!, async

EXPLANATION

setTimeoutwill not block execution of lines that come after it

Identifying the Base & Recursive
Case Quiz

justDance
justDance

justDance("I Wanna Dance With Somebody (Who Loves Me)"

Which of the following errors will result from running the above function?

ReferenceError: song is not defined

404: File not found

ENOENT: No such file or directory

EXPLANATION

Because we're missing a base case, this function will recurse infinitely and cause a stack overflow.
We expect a RangeErrorfrom this.

exercise
console.log("Just a few more reps!”

drinkWater

drinkWater
if 0
exercise 1

else
console.log("Whew! Good workout."
return

exercise 5

For the recursive function above, what is the recursive step?

bottle.water - 1
exercise(bottle)
bottle.water === 0

bottle.water > 0

EXPLANATION

The recursive stepshould move us closer to the base case(here, bottle.water === 0).
Decrementing the value of bottle.waterdoes this. Careful not to confuse this with the recursive
case, which is the input values that cause the function to recurse.

justDance
justDance

justDance("I Wanna Dance With Somebody (Who Loves Me)"

Which of the following should we add to prevent an error from the above
function? You should choose all answers that are appropriate.

A parameter.

A base case

A recursive step

A recursive case

EXPLANATION

This function already has a recursive case, but it has no way of terminating nor anything helping it
work towards that termination! While the function also has a parameter, it's not particularly helpful at

the moment.

echo
if %]
return

console.log

echo 1

echo("Hello there!", 10

For the recursive function above, select the correct Base & Recursive
Cases. There will be one of each type.

Recursive: volume === 10
Base: volume === 0
Base: volume - 1

Recursive: volume > ©

EXPLANATION

echo () will recurse as long as volume > 0, and will terminate as soon as volume === 0.Don't
get the recursive case(here, when volumeis greater than 0) confused with the recursive
step(here, volume - 1)!

exercise
console.log("Just a few more reps!"”
drinkWater

drinkWater
if 0
exercise 1
else
console.log("Whew! Good workout."
return

exercise 5

For the recursive function above, select the correct Base & Recursive
Cases. There will be one of each type.

Base: bottle.water > ©
Recursive: drinkWater (bottle)

Recursive: "bottle.water > 0

Base: bottle.water === 0
EXPLANATION
This indirectly recursive pair of functions will repeat until bottle.water === 0, at which

point drinkWater () will return. Therefore, the recursive case is bottle.water > 0.

Callbacks Quiz Recall

let foo function
console.log("vroom"
for (let 0
cb

console.log("skrrt"

foo(2, function
console.log("swoosh"

In what order will the code above print out?

vroom, swoosh, skrrt, swoosh, skrrt
swoosh, vroom, skrrt
vroom, swoosh, swoosh, swoosh, skrrt

vroom, swoosh, swoosh, skrrt

EXPLANATION

Since the loop iterates twice, 'swoosh' will print twice between 'vroom' and 'skrrt'.

let foo function
console.log("Everglades”
console.log("Sequoia”

console.log("Zion"

foo
console.log("Acadia"

In what order will the code above print out?

Zion, Everglades, Sequoia, Acadia
Zion, Everglades, Acadia, Sequoia
Everglades, Sequoia, Zion, Acadia

Everglades, Zion, Acadia, Sequoia

EXPLANATION

The prints that belong to foowill be executed only when it is called after 'Zion', but before 'Acadia’.

Are functions considered first class objects in JavaScript?

no

yes

EXPLANATION

Functions are first class objects in JavaScript, because they can be assigned, passed as an
argument, and returned.

let foo function
console.log("hello"
return 42

When executed in node, what will the code snippet above print out?

[Function: foo]
42
It will print nothing

hello

EXPLANATION

Nothing will be printed because the only console. logis within the foofunction, but foo()is never
called.

Which of the following is not required to be a first class object?

ability to be assigned to a variable
ability to be mutated
ability to be a return value of a function

ability to be an argument to a function

EXPLANATION

A first class object does not need to mutable. For example, strings are immutable but still first class
because they can be assigned, passed as an argument, and returned.

let foo function
console.log("hello"

return 42

console.log

When executed in node, what will the code snippet above print out?

hello

It will print nothing

42

[Function: foo]

EXPLANATION

The foo()is not called, instead the foofunction object itself is printed out.

let bar function

return toLowerCase

let foo = function
console.log(cb1l
console.log(cb2

foo("Hey Programmers"” function
return toUppercCase B
When executed in node, what will the snippet above print out?

[Function], [Function]

hey programmers..., HEY PROGRAMMERS!

HEY PROGRAMMERS!, hey programmers...

EXPLANATION

Since arguments are passed positionally, cblis barand cb2is the anonymous function.
Both cbland cb2are called and their return values are printed out.

let bar = function
console.log("Ramen"

let foo function
console.log("Gazpacho"
cb

console.log("Egusi™

console.log("Bisque"
foo

console.log("Pho"

In what order will the code above print out?

Bisque, Gazpacho, Egusi, Ramen, Pho
Bisque, Pho, Gazpacho, Egusi, Ramen
Ramen, Gazpacho, Egusi, Bisque, Pho

Bisque, Gazpacho, Ramen, Egusi, Pho

EXPLANATION

The barfunction is passed as a callback to foo, so the name cbrefers to barinside of foo

let bar function
console.log("Arches"

let foo function
console.log("Everglades"”
bar
console.log("Sequoia"

console.log("Zion"
foo

console.log("Acadia"

In what order will the code above print out?

Arches, Everglades, Sequoia, Zion, Acadia
Zion, Everglades, Arches, Sequoia, Acadia
Zion, Everglades, Sequoia, Arches, Acadia

Zion, Arches, Everglades, Sequoia, Acadia

EXPLANATION

The code inside of functions only execute once the function is called. When a function returns,
execution jumps back to the line after where it was called.

let bar function

mystery("sneaky"

let foo function
console.log

bar

In the snippet above, which function is acting as a "callback™?

console.log
bar

foo

EXPLANATION

A callback is a function that is passed as an argument to another function. In this example, foois
passed as an argument to bar, making foothe callback.

function foo
console.log("fizz"

function bar

console.log("buzz"

function boom
console.log("zip
cbl
console.log("zap
cb2

console.log("zoop"

boom

In what order will the code above print out?

Zip, zap, zoop, buzz, fizz
zip, buzz, zap, fizz, zoop
zip, fizz, zap, buzz, zoop

fizz, buzz, zip, zap, zoop

EXPLANATION

barand fooare passed in as arguments for cbland cb2respectively.

Context Quiz Recall

let
Ilje_tll
sayName: function

return this

console.log sayName // ???

What is the returned value from the above invocation of cat.sayName?

undefined
Jet

the global object
object

cat

EXPLANATION

The catobjectis the context of the cat.sayName method-style invocation so the returned value will
be cat.name-whichis "Jet".

let
pounce: function
console.log("woosh"

hunt: function

this.pounce

let
goHunt // TypeError: this.pounce is not a function

What is the context of the above goHuntfunction?

the global object
panther
hunt

object

EXPLANATION

When we extract the goHunt method to a separate variable and then try to invoke it - the goHuntwill
have lost the context of the pantherobject. So the goHuntwill instead be called upon the global

object.

function sayThis
if (true
console.log(this /] => ?2?

sayThis

What is the value printed when we invoke the sayThisfunction above in

Node?

the global object

sayThis

block

undefined

None of the above

EXPLANATION

The global object is the context for every function call that does not have another defined context.

A is a function that is a value within an object and belongs to that
object.

this

method

object

None of the above

context

EXPLANATION

A methodis a function that is a value within an object and belongs to an object.

let
pounce: function

console.log("woosh"

hunt: function
this.pounce

let hunt.bind

What is the context of invoking the boundHuntfunction above?

object
panther
hunt

the global object

EXPLANATION

When we extract the goHunt method and bindit to the pantherobject then no matter
where boundHuntis called it will have the bound context of the pantherobiject.

let
whoIsThis: function
return this

console.log whoIsThis [/ ???

What is the returned context from the above invocation of cat.whoIsThis?

undefined
cat

the global object

object

Jet

EXPLANATION

The catobjectis the context of the cat.whoIsThismethod-style invocation.

The value of thisin a function is the function's .

scope
method

None of the above
context

this

EXPLANATION

The value of thisin a function is that function's context.

Dotfiles Quiz

Printing the current time, your user name, and the current gitbranch (if
any).

.bash_profile

.bashrc

EXPLANATION

These details are friendly reminders, don't take a lot of time to process, and will likely be helpful
each time you open a new terminal. . bashrcgets loaded with each terminal, so it's a good place to

include small snippets like this.

Checking for & downloading software updates.

.bashrc

.bash_profile

EXPLANATION

We wouldn't want to slow down our computer every time we open a new terminal window!
Since .bash_profileonly gets loaded when logging in, we should keep any downloads or
potentially long-running processes confined there.

Showing a long "Message of the Day" that welcomes new users to your
server.

.bash_profile

.bashrc

EXPLANATION

A big message will get veryannoying at the top of every window. We should only show this once
when logging in for the first time, so .bash_profileis the place to go.

Modifying your PATHvariable: export PATH="/other/file:$PATH"

.bashrc

.bash_profile

EXPLANATION

Consider what would happen if this code was run each time you opened a new terminal window.
First you'd have /other/file:$PATH. With the second window, it would

become /other/file:/other/file:$PATH. The third

window: /other/file:/other/file:/other/file:$PATH. It won't take long for that to get out
of control! Any modifications that aren't idempotent should be placed in .bash_profileto ensure
they're not building up consequences.

Customizing your prompt and setting custom aliases.

.bash_profile

.bashrc

EXPLANATION

Minor customizations like these can make a big difference in your workflow! Don't lose them every
time you open a new terminal. Placing these in . bashrcensures that each terminal session has a
consistent look & feel, and makes your transitions between sessions much easier to manage.

Falsey Values in JavaScript Quiz

if ("false"
console.log("Hello!"
else if
console.log("Goodbye!"
else if (""

console.log("Have a nice day!"

else

console.log("party time is over"

What will be printed when the above code is run?

"party time is over"
"Have a nice day!"
"Hello!"

"Goodbye!"

EXPLANATION

The string "false" is stilla non-empty string so when we hit our first conditional that condition will

evaluate to true!

if "o"
console.log("Hello!"
else if 42
console.log("Goodbye!"
else if Infinity
console.log("Have a nice day!"

else

console.log

What will be printed when the above code is run?

"Have a nice day!"
"Hello!"
"We meet again"

"Goodbye!"

EXPLANATION

All of the statements withinthe if. .else block will evaluate as truthy because none of them are
one of the seven falsey values in JS (NaN, false, @, "", On, undefined and null).

Which of the following will evaluate as falsey in JavaScript?

1}
[]

17

EXPLANATION

An empty string will evaluate as falsey in JavaScript - all the other answers are truthy!

Select the following that are falsey values in JavaScript:

false

NaN

undefined

null

on

EXPLANATION

These are all falsey values in JavaScript. These are actually the seven falsey values in
JavaScript. @n is the Bigint primitive data type's falsey value.

Git Actions Quiz

Updates branch refs.

Pushing to a remote
Adding to staging

Committing

EXPLANATION

Using git add doesn't affect branch refs, but any sort of commit will. Committing locally will move
your local HEAD ref to your new commit, and git push will update the remote repository's branch

ref to the new commit you've added.

Only affects your local repository.

Adding to staging
Pushing to a remote

Committing

EXPLANATION

The key word here is "local". Your staging area and commit history are limited to the repository on
your machine. Only after using git push does your commit history & code get shared with the

remote.

Makes code available for a pull request.

Committing

Pushing to a remote

Adding to staging

EXPLANATION

You must use git push to make code accessible to others. There's no way to open a pull request
on your local repo!

Can be easily rolled back without affecting your repository's history.

Adding to staging
Pushing to a remote

Committing

EXPLANATION

Until you've used git commit, your commit history does not reflect your changes. git add canbe
easily rolled back with git reset or git checkout.

Creates a new commit in your local commit history.

Pushing to a remote
Committing

Adding to staging

EXPLANATION

Using git commit will add your changes as a new commitin your local repo. git add moves
your changes to the staging area, but doesn't commit them, and pushing to a remote only adds a

commit to a remote repository.

Git Rebase Quiz

Adds an additional commit in the event of a conflict.

Rebase

Merge

EXPLANATION

A "merge commit" is created to preserve changes you've made while resolving a merge conflict.

"Rewrites history"” and may create isolated, unreachable commits.

Rebase

Merge

EXPLANATION

git rebase is a useful tool, but can be dangerous! Commit hashes will be regenerated when
rebasing.

Is OK to use on code after it has been pushed to a remote.

Rebase

Merge

EXPLANATION

Remember the "Golden Rule of Git": Never rebase or reset code that you've shared with others!

Generates new commit hashes for existing commits.

Rebase

Merge

EXPLANATION

Rebasing "rewrites history" - including the commit hashes!

Safely incorporates code from another branch into your current branch.

Merge

Rebase

EXPLANATION

git merge is a safe operation, as it won't change the history of your branch.

Function Hoisting in JavaScript Quiz

hello

var hello function
console.log("hello!"

What type of error will be thrown when the above code snippet is run?

ReferenceError: Cannot access 'hello' before initialization

No error will be thrown from the above code snippet.

TypeError: hello is not a function

EXPLANATION

In the above code snippet the named var declared variable is hoisted to the top of the scope
with the value of undefined. The first line of the code snippet above will then attempt to
invoke undefined resulting ina TypeError because the value of hello is not a function and

therefore cannot be invoked.

let "hello"

function hello
console.log("hello!"

console.log

What will happen when the above code snippet is run?

TypeError: hello is not a function

"hello" will be printed to the console

ReferenceError: Identifier 'hello' has already been declared

EXPLANATION

Attempting to define a 1let declared variable and a function declaration with the same name in
the same scope will throw a ReferenceError because the name cannot be declared twice.

console.log(goodNight

var goodNight function
return "Good Night!"

What will happen when the above code snippet is run?

"Good Night" will be printed to the console

ReferenceError: Cannot access 'goodNight' before initialization

TypeError: goodNight is not a function

EXPLANATION

The goodNight functionis a function expression defined using var. A var declared variable
will have it's name hoisted to the top of it's scope and it's value setto undefined. So inthe
above code snippet we are attempting to invoke undefined so we receive a TypeError.

console.log(goodNight

let goodNight function goodNight

return "Good Night!"

What will happen when the above code snippet is run?

TypeError: goodNight is not a function

ReferenceError: Cannot access 'goodNight' before initialization

"Good Night" will be printed to the console

EXPLANATION

The goodNight function is a function expression defined using let. Since any let variable
declared variable won't be accessible until the value of the function is assigned we receive

a ReferenceError.

console.log(shoutWord("apple"

function shoutWord
return toUpperCase

What will happen when the above code snippet is run?

ReferenceError: Cannot access 'shoutWord' before initialization

"APPLE" will be printed to the console

TypeError: shoutWord is not a function

EXPLANATION
The shoutWord function is a named function declaration so it will be hoisted in memory and

available in the above scope.

IIFE Quiz

lIFEs are one way to prevent the pollution of the global namespace by
creating functions and variables that will disappear after the IIFE has
been invoked.

True

False

EXPLANATION

Variables and functions written within an lIFE cannot be accessed outside that function!

What does IIFE stand for?

Invoked Immediately Function Enunciation
Immediately-Invoked Function Expression
Involuntarily Invoked Function Expression

Immediately-Invoked Function Embellishment

EXPLANATION

IFE stands for Immediately-Invoked Function Expression.

A single IIFE can be invoked multiple times throughout an application.

False

True

EXPLANATION

The exact opposite is true! An IIFE is invoked once then never again.

function
const "Hello world!"
console.log /] ???

What will be printed when the above code snippet is run?

[Function]
"Hello world!"

An error is thrown.

EXPLANATION

The variables defined within an IFE are not available in an outer scope.

function
console.log("hello world!"
// => "hello world!'

True or False: The above IIFE syntax is correct.

true

false

EXPLANATION

False! When we define and IIFE we need to wrap our anonymous function in the grouping
operator before we invoke it. The above will give us a syntax error.

const function

return "food"

console.log /] ???

What will be printed when the above code snippet is run?

[Function]
"food"

An error is thrown.

EXPLANATION
When an IIFE is assigned to a variable the function will be invoked and then the return value of

that function will be assigned to the variable name. So in the above example
the result variable would have the value returned by the IIFE (which in this case is food).

Navigation with cd Quiz

/|

/

/|

users/

/|

/|

student/ admin/

%

homework.js

We're way down in /etc/server/sites/.
to /users/?

() cd ../../../users/

() cd server/etc/users/

'CD cd /users/

/|

etc/

/|

server/

/|

sites/

my-site

What's the best way to get

EXPLANATION

Remember that prefixing a path with /takes us back to the rootdirectory with no intermediate steps.
We can't navigate our directories backwards, and while the . . method would get us to the right
place, it's harder to move three levels up versus going directly back to /and down only one level.

-

/|

/|

users/ etc/
student/ admin/ server/
homework.js sites/ config

my-site
We would like to update our website. How can we get to my-site?
() cd etc/server/sites/my-site/
() cd etc/sites/

'Q cd etc/server/sites/

EXPLANATION

Notice that my-siteis a file, not a directory. lt's common for system & configuration file names to
have no extension. cdis only good for changing directories, not opening files, so we don't want to
include my-sitein the path.

-

/|

/|

users/ etc/
student/ admin/ server/
homework.js sites/ config

my-site
The server needs updating! Let's go to the directory containing config.
() cd etc/sites/
'Q cd etc/server/

() cd users/

EXPLANATION

Both the sitesdirectory and the configfile are inthe serverdirectory, so we want to be
in server. Navigating to etc/sites/will fail since there's no such directory, and going
to users/will succeed but isn't the correct directory.

-

/|

/|

users/ etc/
student/ admin/ server/
homework.js sites/ config

my-site
Let's move around a little more! Beginning in /users/student, how would
we get to /users/admin?
'CD cd ../admin
O cd admin/

Q cd users/admin

EXPLANATION

The . . notation in a path takes us to the parent directory (in this case, /users/) . Trying to go
directly from the student/directoryto admin/or users/admin/would fail as there are
no student/admin/or student/users/admindirectories.

-
w

users/ etc/
student/ admin/ server/
homework.js sites/ config

my-site
It's time to turn in your homework! How do you get to the directory
containing homework. js?

() cd users/student/

() cd student/

() cd users/

EXPLANATION

Beginning from /, you must go through allintermediate directories to get to homework. js.

Predicting Variable Evaluations Quiz

let funcl
let
console.log

let func2
console.log
let

let func3
console.log
var

Which of the above functions will throw an error when invoked?

func2
All three will throw errors
func3

func1

EXPLANATION

The func1 function will run because a let declared variable with have a default value
of undefined and will print that value. The func3 function uses var to declare a variable which will
hoist the name of the hello variable to the top of the function's scope - allowing it be logged with
the default value of undefined. That leaves func2 which will throw an error! This is because

in func2 we declare a variable using let which means that variable's name will be hoisted to the
top of the function's scope but will be unavailable until it has been assigned a value because itis in
the temporal dead zone.

const
console.log /] ???

What is printed when the above code snippet is run?

undefined
An Error is thrown.

goodbye

EXPLANATION
When declaring a new const variable we need to assign that variable a value because of the
nature of const being unable to be reassigned after the variable's declaration.

let
console.log /] ???

What is printed when the above code snippet is run?

goodbye
undefined

An Error is thrown.

EXPLANATION

An declared but unassigned let variable will by default evaluate to undefined.

var

console.log /] ???

What is printed when the above code snippet is run?

hello
undefined

An Error is thrown.

EXPLANATION

A declared but unassigned var variable will by default evaluate to undefined.

Primitive Data Types Quiz

The String primitive data type has no methods.

False

True

EXPLANATION

The Object type is the only data type in JavaScript that has methods. The String Primitive data type
is wrapped by a Stringobject that has methods - but the String primitive itself has no methods.

The Object Data Type is immutable.

True

False

EXPLANATION

JS Primitive Data Types are immutable - and an Object is not a primitive data type.

Which of the following choices is a primitive data type in JavaScript?

Symbol
Array
String
undefined

Boolean

Object

EXPLANATION

Everything choice above is a primitive data type except for the Objecttype and an Array. An
Obiject is nota primitive data type in JavaScript and an array is a type of Object.

The Object data type is the only JavaScript data type that has methods.

False

True

EXPLANATION

The Object type is the only data type in JavaScript that has methods.

const
"Jet"
noise: function
console.log("MEOW"

The above noisefunction is a method of the catobject.

False

True

EXPLANATION

A method is a function that belongs to an object. In the above example the noisefunction belongs to
the catobject making it a method of that object.

Scope Quiz Recall

function letsJam
// functionl's scope
let 3

if (true

const 2

if (true
let 1

if (true
const "let's jam!"

return

letsJam J/ ???

The value returned by the letsJamfunction is _.

let's jam!

An error is thrown

EXPLANATION

The keywords letand constare block-scoped. Meaning that if a 1etor constare declared within
a block { }that variable will stay within that block. In the above 1etsJamfunction the value returned
will be the randvariable that was declared within the same outer scope - 3.

function sayPuppy
const "Wolfie"

return

sayPuppy // "Wolfie"

console.log /] ????

What is the value logged in the last line of the snippet above
(console.log(puppy))?

puppy
undefined
An Error is thrown

Wolfie

EXPLANATION

Scope chaining allows an inner scope to reference an outer scope's variables but it will not allow an
outer scope to access inner scope's variables.

function inner
let "hello"
return

function outer

let inner
return
let outer
inner

/] 222

What is the value of the final line of the snippet above (resultl ===
result2) ?

true
false

An Error is thrown

EXPLANATION

No matter where inneris invoked it will always return the same result. This is because of lexical
scoping.

let "Shasta"

function sayPuppy
console. log

sayPuppy /] ???

What is the value logged inside the sayPuppyfunction?

puppy

undefined

An Error is thrown

Shasta

EXPLANATION

We declared a variable with 1etin the global scope. The sayPuppyfunction will have access to any
variables within it's local scope as well as any variables declared in outer scopes because of scope
chaining!

function catSound
var "meow"

return

function dogSound

var "bark"
return
let catSound
let dogSound
/] ???

The value of the last line in the code snippet above is:

false

true

EXPLANATION

Above we declared two different function-scoped variables using varin catSoundand dogSound.
Since the vardeclared variables will be function-scoped they will return different values from their
separate functions.

// 1. ??°?
let "bokbok"

function farmTime
// 2. ???

console.log

if (true
// 3. ??°?
let "moo"

In the above code snippet there are three scopes labelled with numbers.
Below pick the correct answer for the name of each scope in order.

1.Local/Function Scope 2.Global Scope 3. Block Scope
1. Global Scope 2.Local/Function Scope 3.Block Scope

1. Block Scope 2.Local/Function Scope 3.Global Scope

EXPLANATION

The three scopes above are Global scope, Function scope, and Block scope in that order.

Safety with sudo Quiz

sudo rm -rf some-file.txt

Safe

Dangerous

EXPLANATION

Yikes!This is verydangerous. If you don't have access to rma file without sudo, there's likely a good
reason. Never use sudoand rmtogether unless you are 100% certain you understand the potential
consequences.

sudo 1ls /etc/init.d/

Dangerous

Safe

EXPLANATION

The 1scommand is non-destructive, so it's safe to sudo! You might use this while browsing lower-
level files in your operating system.

sudo chmod +x my-script.sh

Dangerous

Safe

EXPLANATION

Using chmodto update the executable permission of a file is generally safe, but it's up to you to
understand what that file will do when executed. You should never make scripts you've downloaded
from the Internet executable unless you've read & understand the file's contents.

sudo chmod 777 ~/my-private-file

Safe

Dangerous

EXPLANATION

777is the octal permissions notation for "everyone can do everything to this file". It's very unlikely
that you want any file totally accessible to every person that uses your system! Whenever you see
this command, think carefully: is there a less-permissive way to grant access to only the users that
need this file, maybe by adding them to a group?

sudo cp /var/www/index.html /var/www/index.js

Safe

Dangerous

EXPLANATION

The cpcommand changes the filesystem, but it doesn't remove any existing files - it just adds a new
one! This is safe to sudoas you're very unlikely to cause negative side effects.

sudo mv /var/www/index.html /var/www/index.js

Safe

Dangerous

EXPLANATION

Using mvmoves a file and might cause problems with other applications that depend on the original
file. This is destructive behavior; you should never sudodestructive behavior.

Score

You have submitted your quiz.
You got 5 questions correct, and 0 question(s) still being graded.
Your score so far is 100 out of 100.

Object Key Quiz

console.log(Symbol("foo" Symbol("foo" /] ???

What happens when the above code snippet is run?

true is printed
An error is thrown.

false is printed

EXPLANATION

Each created symbol is unique! The optional description string is just for debugging
purposes.

const Symbol ("species™
const
"whale"

llwallyll

console.log(Object.getOwnPropertySymbols /] ???

What is printed when the above code snippet is run?

[Symbol(species), "name"
[Symbol(species)]
[Ilnamell

[]

EXPLANATION

The Object.getOwnPropertySymbols method will only return symbol keys - ignoring string
keys.

Pick the following which are can be set as a key in an Object:

Symbol
Object
Number
String

Boolean

EXPLANATION

An object's keys can be either a String ora Symbol.

const Symbol
const Symbol
console.log /] ???

What happens when the above code snippet is run?

true is printed
false is printed

An error is thrown.

EXPLANATION

Each created symbol is unique!

const Symbol("species™
const
"whale"
"Wally"
console.log(Object.keys /] ???

What is printed when the above code snippet is run?

[Symbol(species)]
[]
[Symbol(species), "name"]

[Ilnamell

EXPLANATION

The Object.keys method will only return string keys - ignoring Symbol keys.

Iteration vs. Recursion Free Response

Describe what makes a problem a good candidate for recursion. What
should you look for when evaluating whether recursion or iteration is the

better choice?

1431characters left

EXPLANATION

Problems with complexor largeinputs may be good candidates for recursion.

