
HTTP	Learning	Objectives
HTTP	stands	for	HyperText	Transfer	Protocol.	Is	a	protocol	for	transmitting	hypermedia	documents,	such	as	HTML.	HTTP	requests	can	have	up	to	three
parts:	a	request	line,	headers,	and	a	body.

1.	Match	the	header	fields	of	HTTP	with	a	bank	of	definitions

HTTP	headers	let	the	client	and	the	server	pass	additional	information	with	an	HTTP	request	or	response.	Here	are	some	common	request	headers	you'll
see:

Host:	specifies	the	domain	name	of	the	server.
User-Agent:	a	string	that	identifies	the	operating	system,	software	vendor	or	version	of	the	requester.
Referer:	the	address	of	the	previous	web	page	from	which	a	link	to	the	currently	requested	page	was	followed.
Accept:	informs	the	server	about	the	types	of	data	that	can	be	sent	back.
Content-Type:	Indicates	the	media	type	found	in	the	body	of	the	HTTP	message.

2.	Matching	HTTP	verbs	(GET,	PUT,	PATCH,	POST,	DELETE)	to	their	common
uses

HTTP	defines	a	set	of	request	methods	to	indicate	the	desired	action	to	be	performed	for	a	given	resource.

GET:	a	request	to	retrieve	data.	It	will	never	have	a	body.
POST:	sends	data	to	the	server	creating	a	new	resource.
PUT:	updates	a	resource	on	the	server.
PATCH:	similar	to	PUT,	but	it	applies	partial	modifications	to	a	resource.
DELETE:	deletes	the	specified	resource.

3.	Match	common	HTTP	status	codes	(200,	302,	400,	401,	402,	403,	404,	500)	to
their	meanings

HTTP	response	status	codes	indicate	whether	a	specific	HTTP	request	has	been	successfully	completed.

200:	OK.	The	request	has	succeeded.
302:	Found.	The	URI	of	requested	resource	has	been	changed	temporarily.
400:	Bad	Request.	The	server	could	not	understand	the	request	due	to	invalid	syntax.
401:	Unathorized.	The	client	must	authenticate	itself	to	get	the	requested	response.
402:	Payment	Required.
403:	Forbidden.	The	client	does	not	have	access	rights	to	the	content.
404:	Not	Found.	The	server	can	not	find	the	requested	resource.
500:	Internal	Server	Error.	The	range	from	500-599	indicate	server	errors.

4.	Send	a	simple	HTTP	request	to	google.com

netcat	(nc)	allows	you	to	open	a	direct	connection	with	a	URL	and	manually	send	HTTP	requests.

Request

nc	-v	google.com	80

GET	/	HTTP/1.1

Response

HTTP/1.1	200	OK

Date:	Thu,	28	May	2020	20:50:17	GMT

Expires:	-1

Cache-Control:	private,	max-age=0

Content-Type:	text/html;	charset=ISO-8859-1

<!doctype	html>

<html>

</html>

5.	Write	a	very	simple	HTTP	server	using	‘http’	in	node	with	paths	that	will
result	in	the	common	HTTP	status	codes

const	http	=	require('http');

http.createServer(function(request,	response)	{
				if	(request.url	===	'/')	{
								response.writeHead(

												200,

												{	'Content-Type':	'text/html'	}

);

								response.write('<h1>OK</h1>');

								response.end();

				}	else	{
								response.writeHead(404);

								response.end();

				}

}).listen(8080,	function()	{
				console.log(

								'listening	for	requests	on	port	8080...'

);

});

Promises	Lesson	Learning	Objectives	I

1.	Instantiate	a	Promise	object

const	myPromise	=	new	Promise((resolve,	reject)	=>	{
				try	{
								//	try	some	code,	if	it	works,	then	we	can	call	`resolve()`

								someAsynchronousFunctionThatMightFail(result	=>	{

												//	If	the	async	function	works,	it'll	call	this	callback

												//	and	pass	us	the	result	of	whatever	it	did.

												resolve(result);	//	Then	we	can	call	resolve	with	the	result.

								});

				}

				catch	(error)	{
								//	if	we	get	an	error	we	can	call	`reject()`	with	the	error

								reject(error);

				}

});

2.	Use	Promises	to	write	more	maintainable	asynchronous	code

Let's	assume	we	want	to	wait	10	seconds,	do	a	thing,	then	wait	10	more	then	do
a	different	thing,	then	wait	30	seconds	and	do	a	final	thing.	We	can	use	setTimeout
but	with	callbacks	it	looks	like	this:

setTimeout(()	=>	{	//	Look	at	all	the	deep	nesting!

				doAThing();

				setTimeout(()	=>	{

								doADifferentThing();

								setTimeout(()	=>	{

												doAFinalThing();

								},	30000)

				},	10000)

},	10000)

If	we	wrap	setTimeout	in	a	promise	like	this:

const	sleep	=	(milliseconds)	=>	{
				return	new	Promise((resolve)	=>	{
								setTimeout(resolve,	milliseconds);

				});

}

Then	we	can	write	code	that	looks	like	this	using	our		sleep		function.

sleep(1000)

				.then(()	=>	{

								doAThing();		//	We	don't	need	to	return	a	promise	here	`.then()`

																					//	automatically	returns	one	anyway.

				})

				.then(()	=>	{

								return	sleep(1000);	//	We	have	to	return	the	promise	we
																												//	got	from	the	sleep	function

																												//	then()	is	smart	enough	to	know	when

																												//	we	return	a	promise	vs	just	returning	a	value

				})

				.then(()	=>	{

								doADifferentThing();

				})

				.then(()	=>	{

								return	sleep(3000);
				})

				.then(()	=>	{

								doAFinalThing();

				});

Using	shortened	arrow	function	syntax	we	can	make	this	even	shorter	and
make	it	look	really	synchronous,	even	though	it's	asynchronous.

sleep(1000)

.then(()	=>	doAThing())

.then(()	=>	sleep(1000))

.then(()	=>	doADifferentThing())

.then(()	=>	sleep(3000))

.then(()	=>	doAFinalThing());

You	can	also	use		Promise.all()		when	you	don't	care	about	the	order.

const	fs	=	require('fs').promises	//	requires	the	promises	version	of	fs

//	Read	in	three	files	and	concatenate	them	together.

Promise.all([

				fs.readFile("d1.md",	"utf-8"),

				fs.readFile("d2.md",	"utf-8"),

				fs.readFile("d3.md",	"utf-8"),

])

.then((contents1,	contents2,	contents3)	=>	{	//	Even	though	they	run

																																													//	asynchronously

																																													//	in	an	indeterminate	order,

																																													//	Promise.all	keeps	them	in	the

																																													//	right	order	in	the	arguments

																																													//	list

				return	contents1	+	contents2	+	contents3;
})

.then((concatted)	=>	{

				console.log(concatted);

});

Imagine	if	we	tried	to	do	this	without	Promises:

const	fs	=	require('fs');

fs.readFile("d1.md",	"utf-8",	contents1	=>	{

				fs.readFile("d1.md",	"utf-8",	contents2	=>	{

								fs.readFile("d3.md",	"utf-8",	contents3	=>	{

												console.log(contents1	+	contents2	+	contents3);

								});

				});

});

In	fact	this	isn't	doing	the	same	thing	at	all!	This	is	actually	only	reading
the	next	file	when	the	first	one	is	completed.	Promise.all()	is	probably
faster	since	all	the	readFiles	are	kicked	off	at	the	same	time.

3.	Use	the	fetch	API	to	make	Promise-based	API	calls

const	fetch	=	require('node-fetch');	//	we	need	this	to	use	fetch	in	node
																																					//	It's	built	into	the	browser

fetch("https://ifconfig.me/all.json")

		.then((response)	=>	{

				return	response.json();	//	the	json()	method	returns	a	promise	and	is	async
		})

		.then((data)	=>	{

				console.log(data);

		});

Async	and	Await	Learning	Objectives

1.	Use	async/await	with	promise-based	functions	to	write	asynchronous	code
that	behaves	synchronously.

function	slow()	{
				return	new	Promise((resolve,	reject)	=>	{
								setTimeout(()	=>	{

												resolve('That	was	slow.');

								},	2000);

				});

}

function	fast()	{
				return	new	Promise((resolve,	reject)	=>	{
								setTimeout(()	=>	{

												resolve('That	was	fast.');

								},	1000);

				});

}

async	function	syncLike()	{
				const	slowVal	=	await	slow();
				console.log(slowVal);

				const	fastVal	=	await	fast();
				console.log(fastVal);

}

syncLike();	//	Prints	'that	was	slow.'	after	2000ms,	then	'that	was	fast.'	after	1000ms

The	real	power	comes	in	leveraging	libraries	that	support	promises	like		fs	
of		fetch	

Instead	of:

const	fs	=	require("fs");

function	concatFiles()	{
				fs.readFile("d1.md",	"utf-8",	(err,	contents1)	=>	{

								fs.readFile("d1.md",	"utf-8",	(err,	contents2)	=>	{

												fs.readFile("d3.md",	"utf-8",	(err,	contents3)	=>	{

												console.log(contents1	+	contents2	+	contents3);

												});

								});

				});

}

concatFiles();

We	can	do	this:

const	fs	=	require("fs").promises;

async	function	concatFiles()	{
				const	contents1	=	await	fs.readFile("d1.md",	"utf-8");
				const	contents2	=	await	fs.readFile("d2.md",	"utf-8");
				const	contents3	=	await	fs.readFile("d3.md",	"utf-8");
				console.log(contents1	+	contents2	+	contents3);

}

concatFiles();

Or	when	using	fetch,	instead	of	this:

const	fetch	=	require("node-fetch");

function	getIpAddress(callback)	{
				return	new	Promise((resolve)	=>	{
								fetch("https://ifconfig.me/all.json")

								.then((response)	=>	{

												return	response.json();
								})

								.then((ipInfo)	=>	{

												resolve(ipInfo);

								});

				}

}

getIpAddress().then(ipInfo	=>	{

				console.log(ipInfo);

})

We	can	just	write	this:

const	fetch	=	require('node-fetch');

async	function	getIpAddress()	{
				const	response	=	await	fetch("https://ifconfig.me/all.json");
				const	ipInfo	=	await	response.json();	//	Remember	.json()	returns	a	promise
				return	ipInfo;
}

//	Rememeber	to	use	await,	we	must	be	inside	an	async	function,	so

//	I	just	made	an	async	IIFE.

(async()	=>	{
				const	ipInfo	=	await	getIpAddress();
})()

Much	better!

HTML	Learning	Objectives

1.	You'll	be	able	to	create	structurally	and	semantically	valid	HTML5	pages
using	the	following	elements:	html,	head,	title,	link,	script,	The	six	header	tags,
p,	article,	section,	main,	nav,	header,	footer,	ul,	ol,	li,	a,	img,	table,	thead,	tbody,
tfoot,	tr,	th,	td.

<!DOCTYPE	html>
<html>

<head>

				<title>HTML	Example</title>

				<link	rel="stylesheet"	href="style.css">

				<script	async	type="module"	src="index.js"></script>

</head>

<body>

				<main>

								<h1>An	HTML	page	example</h1>

								<p>

												This	is	a	very	basic	HTML	page.	For	more	examples	click	

												<a	href="https://open.appacademy.io/learn/js-py---apr-2020-online/week-6-apr-2020-online/brushing-up-on-your-html"

								</p>			

				</main>

</body>

</html>

Testing	Learning	Objectives

1.	Explain	the	"red-green-refactor"	loop	of	test-driven	development.

Red,	Green,	Refactor	refers	to	the	development	loop	at	the	heart	of	TDD.

RED:	We	begin	by	writing	a	test	(or	tests)	that	speicify	what	we	expect	our	code	to	do.	We	run	the	test,	to	see	it	fail,	and	in	doing	so	we	ensure	that	our
test	won't	be	a	false	positive.
GREEN:	We	write	the	minimum	amount	of	code	to	get	our	test	to	pass.	This	step	may	take	just	a	few	moments,	or	a	longer	time	depending	on	the
complexity	of	the	task.
REFACTOR:	The	big	advantage	of	test	driven	development	is	that	it	means	we	always	have	a	set	of	tests	that	cover	our	codebase.	This	means	that	we
can	safely	make	changes	to	our	code,	and	as	long	as	our	tests	still	pass,	we	can	be	confident	that	the	changes	did	not	break	any	functionality.	This	gives
us	the	confidence	to	be	able	to	constantly	refactor	and	simplify	our	code	-	we	include	a	refactor	step	after	each	time	we	add	a	passing	test,	but	it	isn't
always	necessary	to	make	changes.

2.	Identify	the	definitions	of	SyntaxError,	ReferenceError,	and	TypeError

SyntaxError:	These	errors	refer	to	problems	with	the	syntax	of	our	code,	they	usually	refer	to	either	missing	or	rogue	characters	that	cause	the	compiler
to	be	able	to	understand	the	code	we	are	feeding	it.
ReferenceError:	These	errors	refer	to	times	in	our	code	where	we	reference	a	variable	that	is	not	available	in	the	current	scope.
TypeError:	These	errors	refer	to	times	in	our	code	where	we	reference	a	variable	of	the	wrong	type.	Modifying	a	value	that	cannot	be	changed,	using	a
value	in	an	inappropriate	way,	or	an	argument	of	an	unexpected	type	being	passed	to	a	function,	are	all	causes	of	TypeErrors.

3.	Create,	modify,	and	get	to	pass	a	suite	of	Mocha	tests

A	minimal	example:

	test/reverse-string.spec.js	

const	assert	=	require("assert");
const	reverseString	=	require('../lib/reverse-string').reverseString;

describe("reverseString",	()	=>	{

				it("should	reverse	simple	strings",	()	=>	{

								assert.equal(reverseString("fun"),	"nuf");

				});

				it("should	throw	a	TypeError	if	it	doesn't	receive	a	string",	()	=>	{

								assert.throws(()	=>	reverseString(0));

				});

});

	lib/reverse-string.js	

const	reverseString	=	(str)	=>	{
				if	(typeof	str	!==	"string")	{
								throw	new	TypeError("expecting	a	string	arg");
				}

				return	"nuf";
}

module.exports	=	{

				reverseString

}

This	minimal	example	also	shows	the	importance	of	thorough	testing.	Though	all	tests	here	pass,	it	would	be	trivial	to	come	up	with	a	case	where	our
reverseString	implementation	doesn't	do	what	we	want.		reverseString('foo')		for	example.

4.	Use	Chai	to	structure	your	tests	using	behavior-driven	development
principles

Chai	gives	us	the	human-readable	verbage	that	have	become	popular	in	the	BDD	(Behavior	Driven	Developement)	world:

Both	the		should		and		expect		style	assertion	terminology	are	considered	BDD	style,	while	the		assert		style	expressions	are	a	throwback	to	TDD	style.

5.	Use	the	pre-	and	post-test	hooks	provided	by	Mocha

Mocha	provides	four	pre	and	post	test	hooks.	These	should	be	used	to	set	up	preconditions	and	clean	up	after	your	tests.

describe('hooks',	function()	{
		before(function()	{
				//	runs	once	before	the	first	test	in	this	block

		});

		after(function()	{
				//	runs	once	after	the	last	test	in	this	block

		});

		beforeEach(function()	{
				//	runs	before	each	test	in	this	block

		});

		afterEach(function()	{
				//	runs	after	each	test	in	this	block

		});

		//	test	cases

});

Hooks	run	in	the	order	they	are	defined,	as	appropriate;	all		before()		hooks	run	(once),	then	any		beforeEach()		hooks,	tests,	any		afterEach()		hooks,
and	finally		after()		hooks	(once).

