
1. If you're lookin at a SLL

or DLL with the head &

tail equaling the same

node, what does that tell

you?

That the length of the list 1.

2. Of the two swapping

sorts, which is the most

efficient when write

speeds are limited?`

Selection sort, because Bubble

will swap every value in each

comparison, where Selection will

only sort after each inner loop is

completed.

Both are O(n̂ 2) time complexity

& O(1) space complexity.

3. Rank the following from

least to most complex:

O(n)

O(n!)

O(1)

O(n log n)

O(c^n)

O(log n)

O(n^2)

1. O(1) - constant

2. O(log n) - logarithmic

3. O(n) - linear

4. O(n log n) - loglinear,

linearithmic, quasilinear

5. O(n̂ 2) - polynomial

6. O(c^n) - exponential

7. O(n!) - factorial

4. What are the costs of

Merge Sort? Benefits?

The major cost is space - it has

O(n) space complexity.

However, it has O(n log n) time

complexity, so it's much faster

than bubble, selection, or

insertion sort.

5. What are the methods of

a Queue?

What do they do?

Enqueue(Insertion): Adds a Node

to the front of the Queue. Returns

an Integer - New size of Queue

Dequeue(Deletion): Removes a

Node from the front of the Queue.

Returns the Node removed from

front of Queue.

Size: Returns the current size of

the Queue. Returns an Integer.

6. What are the methods of

a Stack?

What do they do?

Push(Insertion): Adds a Node to

the top of the Stack. Returns an

Integer - New size of stack

Pop(Deletion): Removes a Node

from the top of the Stack. Returns

the Node removed from top of

Stack

Size: Returns the current size of

the Stack. Returns an Integer.

7. What are the

names of the

complexity

classes?

Constant, O(1)

Logarithmic O(log n)

Linear O(n)

Loglinear O(n log n)

Polynomial O(n̂ 2)

Exponential O(c^n)

Factorial O(!n)

8. What are the

two most

easily

confused

complexity

types?

Which is

worse?

Polynomial, O(n̂ 2), and exponential O(2^n)

Exponential is worse.

9. What

complexity

does O(3^n)

represent?

Exponential

10. What defines a

doubly-linked

list?

Nodes have two pointers connecting them

bi-directionally (`.previous` and `.next`).

11. What defines a

singly-linked

list?

Nodes have a single pointer connecting

them in a single direction (`.next`)

12. What is a

Linked List?

A Linked List data structure represents a

linear sequence of "vertices" (or "nodes").

13. What is the

Big-O of

Binary Search?

*Time Complexity: O(log(n))*

The number of recursive calls is the number

of times we must halve the array until its

length becomes 0.

*Space Complexity: O(n)*

Our implementation uses n space due to

half arrays we create using slice.

14. What is the

Big-O of

Bubble Sort?

*Time Complexity: O(n^2)*

The inner for loop contributes O(n) in

isolation. In the worst case scenario, the

while loop will need to run n times to bring

all n elements into their final resting

positions.

*Space Complexity: O(1)*

Bubble sort uses the same amount of

memory and create the same amount of

variables regardless of the size of the input.

Week 7
Study online at quizlet.com/_8rj1g6



15. What is

the Big-O

of

Insertion

Sort?

*Time Complexity: O(n^2)*

The outer loop i contributes O(n) in isolation. The

inner while loop will contribute roughly O(n / 2)

on average. The two loops are nested so our

total time complexity is O(n * n / 2) = O(n̂ 2).

*Space Complexity: O(1)*

We use the same amount of memory and create

the same amount of variables regardless of the

size of our input.

16. What is

the Big-O

of Merge

Sort?

*Time Complexity: O(n log(n))*

Since we split the array in half each time, the

number of recursive calls is O(log(n)). The while

loop within the merge function contributes O(n)

in isolation and we call that for every recursive

mergeSort call.

*Space Complexity: O(n)*

We will create a new subarray for each element

in the original input.

17. What is

the Big-O

of Quick

Sort?

Avg Case: O(n log(n))

The partition step alone is O(n). We are lucky and

always choose the median as the pivot. This will

halve the array length at every step of the

recursion O(log(n)).

Worst Case: O(n2)

We are unlucky and always choose the min or

max as the pivot. This means one partition will

contain everything, and the other partition is

empty O(n).

*Space Complexity: O(n)*

Our implementation of quickSort uses O(n) space

because of the partition arrays we create.

18. What is

the Big-O

of

Selection

Sort?

*Time Complexity: O(n^2)*

The outer loop i contributes O(n) in isolation. The

inner loop j will contribute roughly O(n / 2) on

average. The two loops are nested so our total

time complexity is O(n * n / 2) = O(n̂ 2).

*Space Complexity: O(1)*

We use the same amount of memory and create

the same amount of variables regardless of the

size of our input.

19. What is

the Big-O

Simplify

Products

rule?

if the function is a product of many terms, we

drop the terms that don't depend on the size of

the input. O(2n) => O(n)

20. What is

the Big-O

Simplify

Sums

rule?

if the function is a sum of many terms, we keep

the term with the largest growth rate and drop

the other terms. O(n̂ 2 + n) => O(n̂ 2)

21. What is the complexity of a function with a

nested loop?

Typically

polynomial,

O(n̂ 2)?

22. What is the least complex Big O? Constant, O(1),

followed

closely by

logarithmic,

O(log n)

23. What sort type works through swapping,

then ordering, the position of elements?

Bubble sort

24. What sort works by identifying the

middles index, then splitting table, then

repeating until there are arrays containg

each value of the original array?

Merge Sort

25. What's the worst complexity? When would

you use that?

Factorial

Literally never!

It's the worst,

by far.

26. What type of sort works through iterating

through the unsorted region, finding the

min, and swapping it with the first value?

Selection sort

27. When building a constructor for a doubly

linked list, what are its' properties?

DLL

Properties:

this.head

this.tail

this.length

DLL Node

Properties:

this.value

this.next

this.previous

28. When building a constructor for a singly

linked list, what are its' properties? What

about the node constructor for a SLL

SLL Properties:

this.head

this.tail

this.length

SLL Node

Properties:

this.value

this.next

29. When do we use Binary Search? The input data

is sorted!



30. When working with stacks

& queue's, what is the Big-

O space complexity of

their insertion &

deletion?

How do they achieve

that?

O(n)

In either a stack or a queue,

there are no indices, so to find

or access any value, you must

traverse the entire stack/queue's

nodes. 

Queue's have some advantage

when ordered, because you

have the option to start at the

front or back & traverse.

31. When working with stacks

& queue's, what is the Big-

O time complexity of

their insertion &

deletion?

How do they achieve

that?

O(1) time complexity.

They both have a constant

reference to the front or back,

which allows them to make

additions or deletions in a single

action.

32. When would we use

Quick Sort?

When we need an easy to write,

relatively efficient, sort, and

especially if we know our array

is already sorted to some

predictable degree. 

In the worst case, where we

grab a number that happens to

be the min or max value of the

table, the time complexity

O(n̂ 2), but best case is O(n *

log(n))>

The worst case is exceedingly

rare in actual practice.

33. Which data structure

allows deleting data

elements from front and

inserting at back? What

'out' structure does it

have?

Queue

FIFO

34. Which data structure

allows deleting &

inserting elements from

the front? What 'out'

structure does it have?

Stack

LIFO

35. Which sort works by

splitting the array around

a pivot point & filtering

the two remaining

arrays?

Quick Sort

36. Which sort works by splitting the array around &

mid point, comparing the value to the first value of

the 'upper' array & 'lower' array, then repeating?

Binary

Search


