
Binary	Trees	and	Binary	Search	Trees

1.	Explain	and	implement	a	Binary	Tree

A	Binary	Tree	is	a	Tree	where	nodes	have	at	most	2	children,	usually	we	represent
these	as	'left'	and	'right'.

class	TreeNode	{
		constructor(val)	{
				this.val	=	val;
				this.left	=	null;
				this.right	=	null;
		}

}

let	a	=	new	TreeNode('a');
let	b	=	new	TreeNode('b');
let	c	=	new	TreeNode('c');
let	d	=	new	TreeNode('d');
let	e	=	new	TreeNode('e');
let	f	=	new	TreeNode('f');

a.left	=	b;

a.right	=	c;

b.left	=	d;

b.right	=	e;

c.right	=	f;

Creates	the	following	Binary	Tree

Here's	a	complete	implementation	of	a	binary	search	tree



class	TreeNode	{
				constructor(val)	{
								this.val	=	val;
								this.left	=	null;
								this.right	=	null;
				}

}

class	BST	{
				constructor()	{
								this.root	=	null;
				}

				insert(val,	currentNode=this.root)	{
								if(!this.root)	{
												this.root	=	new	TreeNode(val);
												return;
								}

								if	(val	<	currentNode.val)	{
												if	(!currentNode.left)	{
																currentNode.left	=	new	TreeNode(val);
												}	else	{
																this.insert(val,	currentNode.left);
												}

								}	else	{
												if	(!currentNode.right)	{
																currentNode.right	=	new	TreeNode(val);
												}	else	{
																this.insert(val,	currentNode.right);
												}

								}

				}

				searchRecur(val,	currentNode=this.root)	{
								if	(!currentNode)	return	false;

								if	(val	<	currentNode.val)	{
												return	this.searchRecur(val,	currentNode.left);
								}	else	if	(val	>	currentNode.val){
												return	this.searchRecur(val,	currentNode.right);
								}	else	{
												return	true;
								}

				}

				searchIter(val)	{

								let	currentNode	=	this.root;

								while	(currentNode)	{
												if	(val	<	currentNode.val)	{
																currentNode	=	currentNode.left;

												}	else	if	(val	>	currentNode.val){
																currentNode	=	currentNode.right;

												}	else	{
																return	true;
												}

								}

								return	false;
				}

}

module.exports	=	{

				TreeNode,

				BST

};

2.	Identify	the	three	types	of	tree	traversals:	pre-order,	in-order,	and	post-
order

These	are	all	depth	first	traversals,	which	means	using	recursion.

Pre-order

1.	 Access	the	data	of	the	current	node
2.	 Recursively	visit	the	left	sub	tree



3.	 Recursively	visit	the	right	sub	tree

In-Order

1.	 Recursively	visit	the	left	sub	tree
2.	 Access	the	data	of	the	current	node
3.	 Recursively	visit	the	right	sub	tree

Post-Order

1.	 Recursively	visit	the	left	sub	tree
2.	 Recursively	visit	the	right	sub	tree
3.	 Access	the	data	of	the	current	node

3.	Explain	and	implement	a	Binary	Search	Tree

A	Binary	Search	Tree	is	a	special	kind	of	Binary	Tree	where	the	following	is	true:

given	any	node	of	the	tree,	the	values	in	the	left	subtree	must	all	be	strictly	less	than	the	given	node's	value.
and	the	values	in	the	right	subtree	must	all	be	greater	than	or	equal	to	the	given	node's	value

Or	to	say	it	with	recursion:

the	left	subtree	contains	values	less	than	the	root
AND	the	right	subtree	contains	values	greater	than	or	equal	to	the	root
AND	the	left	subtree	is	a	Binary	Search	Tree
AND	the	right	subtree	is	a	Binary	Search	Tree

Some	definitions	of	binary	search	trees	allow	duplicates	and	some	do	not.	We	can
write	our	code	to	deal	with	the	duplicates	though.

Example	of	a	Binary	Search	Tree:

let	ten	=	new	TreeNode('10');
let	five	=	new	TreeNode('5');
let	sixteen	=	new	TreeNode('16');
let	one	=	new	TreeNode('1');
let	seven	=	new	TreeNode('7');
let	sixteenDuplicate	=	new	TreeNode('16');

ten.left	=	five;

ten.right	=	sixteen;

five.left	=	one;

five.right	=	seven;

sixteen.right	=	sixteenDuplicate;

Generates	this	tree:



Usually	we	will	write	a	class	for	our	BST	so	we	can	have	an	"insert"	method.
This	way	we	can	control	the	order	of	how	we	insert	the	nodes	to	make	sure	the
tree	is	a	binary	search	tree	and	also	a	balanced	BST.

Graphs

1.	Explain	and	implement	a	Graph

A	graph	is	a	collection	of	nodes	and	any	edges	between	those	nodes.	It	is	a	broad	category.	Linked	lists	and	trees	are	both	subclasses	of	graphs.

We	can	build	a	graph	out	of	objects	by	making	a	GraphNode	class

//	Class	based	Graph

class	GraphNode	{
				constructor(val)	{
								this.val	=	val;
								this.neighbors	=	[];
				}

}

let	a	=	new	GraphNode('a');
let	b	=	new	GraphNode('b');
let	c	=	new	GraphNode('c');

a.neighbors	=	[b];

b.neighbors	=	[c];

c.neighbors	=	[a];

Adjacency	Lists	are	another	way	to	make	a	graph

//	adjacency	list	(Non-class	based)

let	graph	=	{
				'a':	['b'],

				'b':	['c'],

				'c':	['a']

}

Breadth-first	Search	on	the	adjacency	list	graph.

When	doing	breadth	first,	iterative	is	simpler	and	easier.
We	can	use	a	queue	to	do	this.

Extra	Challenge,	use	the	Queue	class	we	made	last	week	as	the	queue	to	use
inside	of	this	function,	instead	of	just	using	an	array	as	a	queue



function	breadthFirstSearch(graph,	startingNode,	targetVal)	{
				//	Populate	our	queue	with	the	starting	Node

				let	queue	=	[	startingNode	];
				//	Create	a	new	empty	Set	to	hold	the	nodes	we've	visited

				let	visited	=	new	Set();

				//		Keep	going	until	the	queue	is	empty

				while(queue.length)	{
								//	Dequeue	the	first	thing	from	the	queue

								let	node	=	queue.shift();

								//	If	we've	visited	this	node	before,	then	just	continue,	which	goes

								//	back	up	to	the	while	loop

								if(visited.has(node))	continue;
								//	Add	the	node	to	the	visited	set.

								visited.add(node);

								//	Check	to	see	if	the	node	is	the	one	we	are	looking	for,	if	it	is

								//	return	true

								if	(node	===	targetVal)	return	true;
								//	Enqueue	the	node's	neighbors	from	the	adjacency	graph	onto	the	queue

								queue.push(...graph[node]);

				}

				//	If	we	made	it	through	the	loop	without	finding	one,	return	false

				return	false;
}

breadthFirstSearch(graph,	'a',	'c');	//	true

Depth-first	Search	on	the	adjacency	list	graph.

It	is	easier	to	do	a	recursive	solution	for	depth	first.
Depth	first	usually	uses	a	stack,	in	this	case	the	recursive	call-stack	is	acting	as	our
stack.

function	depthFirstSearch(graph,	startingNode,	targetVal,	visited=new	Set())	{
				//	If	we	found	the	node,	return	true

				if	(startingNode	===	targetVal)	{
								return	true;
				}

				let	neighbors	=	graph[startingNode];
				for	(let	neighbor	of	neighbors)	{
								//	If	the	neighbor	has	already	been	visited,	we	can

								//	skip	it.

								if	(visited.has(neighbor))	continue;

								//	Add	the	neighbor	to	the	visited	set

								visited.add(neighbor);

								//	Now	we	recurse	to	check	the	neighbor	and	return	the	result

								return	depthFirstSearch(graph,	neighbor,	targetVal,	visited);
				}

				//	If	we	didn't	find	it,	return	true

				return	false;
}

console.log(depthFirstSearch(graph,	'a',	'c'));

Network	Models	Objectives

1.	Describe	the	structure	and	function	of	network	models	from	the	perspective
of	a	developer

OSI	is	a	reference	model	and	doesn't	match	up	very	well	to	how	things	actually
work	in	the	real	world.	It	has	seven	layers.	Some	descriptions	of	the	OSI	model
try	to	fit	our	existing	tech	into	the	seven	layer	model	but	it	doesn't	match	up
exactly	with	how	networks	work	today.

OSI	Network	Model



1.	 Application	-	HTTP
2.	 Presentation	-	JPEG/GIF
3.	 Session	-	RPC
4.	 Transport	-	TCP/UDP
5.	 Network	-	IP
6.	 Data	Link	-	Ethernet
7.	 Physical	-	DSL,	802.11

The	TCP/IP	model	is	the	actual	way	networks	today	work,	it	is	simpler	than	the
OSI	model	and	has	only	four	layers.

TCP/IP	Network	Model

1.	 Application	-	HTTP,	HTTPS,	FTP,	SMTP,	etc
2.	 Transport	-	TCP	or	UDP
3.	 Internet	-	IP
4.	 Link	-	Ethernet

Internet	Protocol	Suite	Objectives

1.	Identify	the	correct	fields	of	an	IPv6	header

2.	Distinguish	an	IPv4	packet	from	an	IPv6

The	Version	number	is	stored	in	the	headers	of	IP	packets	as	a	binary	number.

IPv4	=	4	=	0100

IPv6	=	6	=	0110



IPv4	addresses	are	made	up	of	4	octets,	each	a	8-bit	binary	number	converted	to	decimal.

Example:		192.168.1.1	

IPv6	addresses	are	made	up	of	a	128bit	number.	It	is	usually	resprentened	in
hexidecimal,	with	every	four	digits	separated	by	a		:	

Example:		2001:0db8:85a3:0000:0000:8a2e:0370:7334	

In	IPv6	addresses	you	can	also	compress	the	zeros	to	make	it	shorter	to	write:

The	rules	are:

An	entire	string	of	zeros	can	be	removed,	you	can	only	do	this	once.
4	zeros	can	be	removed,	leaving	only	a	single	zero.
Leading	zeros	can	be	removed.

Example:		2001:db8:85a3::0:8a2e:370:7334	

3.	Describe	the	following	subjects	and	how	they	relate	to	one	another:	IP
Addresses,	Domain	Names,	and	DNS

IP	Address	-	The	internet	protocol	address	assigned	to	a	particular	networking	device	(Ethernet	adapter,	Wi-Fi	Adapter,	etc).	IPv4	example:
	192.168.1.1	.
Domain	Name	-	A	human	readable	name	assigned	to	an	IP	address.	Examples:		google.com		or		appacademy.io	
DNS	-	Domain	Name	System:	A	protocol	(on	UDP	port	53)	that	allows	our	computer	to	talk	to	a	DNS	Server	and	resolve	a	Domain	Name	into	an	IP
Address.	Example:		google.com		might	resolve	to		172.217.6.142	

Common	DNS	Record	Types	are:

A	-	Directly	maps	a	domain	name	to	an	IPv4	Address
AAAA	-	Directly	maps	a	domain	name	to	an	IPv6	Address
CNAME	-	Maps	a	domain	name	to	another	domain	name
MX	-	Defines	the	mail	server	for	a	domain
NS	-	Defines	the	DNS	Servers	for	a	zone	(domain)
SOA	-	Defines	which	DNS	Server	is	the	authority	for	a	zone(domain)

4.	Identify	use	cases	for	the	TCP	and	UDP	protocols

TCP	-	Transmission	Control	Protocol

TCP	is	used	when	you	want	reliable	connections	and	you	want	the	packets	to	reach	the	destination	in	the	correct	order.	Web	Browsing,	Downloading	Files,
fetching	Email	from	a	server,	Streaming	Music	or	Video	are	all	examples	of	TCP

UDP	-	user	Datagram	Protocol

UDP	is	used	when	you	don't	mind	an	more	unreliable	connection,	but	where	real	time	interactivity	is	more	important.	If	you	drop	a	few	packets,	no	big	deal.
Examples	are	Voice	Over	IP	Telephone	calls,	and	Video	Chat	systems	like	Facetime	or	Zoom.

5.	Describe	the	following	subjects	and	how	they	relate	to	one	another:	MAC
Address,	IP	Address,	and	a	port

MAC	Address	-	A	hardware	address	assigned	to	every	physical	networking	device	on	a	network.	These	are	assigned	usually	at	the	time	the	device	was
manufacturered,	although	in	some	case	they	can	be	changed	via	software.	They	look	like	a	series	of	Hexidecimal	values	separated	by		:		characters.
Example:		ea:de:36:d9:5a:b8	.	They	are	used	to	communicate	on	the	local	network	only.
IP	Address	-	An	address	assigned	to	a	networking	device.	These	are	usually	assigned	in	software,	and	may	be	automatically	assigned	by	an	ISP	or	by	a
router	on	a	local	network	using	DHCP.	They	are	used	to		route		connections	across	multiple	networks.	Example:	IPV4	Address		192.168.1.1	.	A
Router	will	map	IP	Addresses	to	MAC	Addresses	to	keep	track	of	connections.
Port	-	Represents	a	TCP/UDP	connection	on	an	actual	computer.	Valid	ports	are	numbers	in	the	range	from	0-65535.	Used	by	the	operating	system	of	a
computer	to	route	TCP	connections	to	the	right	program	running	on	a	computer.	These	programs	can	be	said	to	be	"listening"	on	a	port.	No	two	programs
are	allowed	to	listen	on	the	same	port	at	once.	The	default	ports	for	web	servers	are	HTTP(80)	and	HTTPS(443).

6.	Identify	the	fields	of	a	TCP	segment



This	was	covered	in	the	optional	lectures	and	therefore	isn't	on	the	assessment

7.	Describe	how	a	TCP	connection	is	negotiated

This	was	covered	in	the	optional	lectures	and	therefore	isn't	on	the	assessment

8.	Explaining	the	difference	between	network	devices	like	a	router	and	a
switch

1.	 Hub	-	A	device	which	hooks	multiple	computers	together	over	ethernet	and	blindly	repeats	ethernet	packets	to	all	the	other	devices	on	a	local	area
network.	These	are	not	used	much	anymore

2.	 Switch	-	A	device	which	intelligently	hooks	multiple	computers	together	over	ethernet	and	sends	ethernet	packets	to	the	correct	devices	on	a	local	area
network	based	on	MAC	Addresses.

3.	 Router	-	A	device	which	is	reponsible	for	routing	IP	packets	BETWEEN	different	networks.


