create user recipe_box_app with createdb password 'password’; Press enter and you should see Migratiﬂns e to One between Student and SChﬂlarShip
psql= CREATE ROLE - student. js
Gl . e Create Table (usually used in the up() method) =
sc-init=
s-makedb= 5 . — ’ Student.hasoneimodels . Scholarship, { foreignkey: 'studentId' });
o sequelize. ¢ ind
sC-makemodel= ot terf ateTablef <Tablen
sc-migrates r u:zugﬂ;;ﬁrnnefr: {ace.cre eTablef <TableName: , |
sc-genseeds= ome directones and a file should have been generated type: SE';IUEliIe.c‘t}"DE}: TSR
sE-seed= allowNull: ctrue|falses,
I. config directory unigue: <true|falses, scholarship. belongs Tofmodels. Student, { foreignkey: 'studentId' 1;
Sequelize provides utilities for generating migrations, models, and seed files o config json file references: { model: <TableName },
2 migrations directory
. . : hy
Init Project . encdie discting 1 One to Many between Student and Class
$ npx sequelize-cli dnit 4 sap :jﬁf :. Ir_ rI.I.T_.l. ' return gueryInterface.createTabled <TableName: , { student. js
i 5L SR ceolumnMame: : |
type: Sequelize. <types, : . | .
You must create a database user, and update the configsconfig. json file to match your database settings to complete the initialization allowNull: ctrue|false:, Sl EiEcl Ll O EERISHRIE, | RIMRETEDE "Clcatel)3
process unigue: ctrue|falses,
’ Modets and Migrations references: | P ——
model: { '
CI'EﬂtE DﬂtabaSE tabledame: <TableWame:
H Class.hasmany{models. student, { foreignkey: 'classId' });
Ll j
npe sequelize-cli dbicreate 1
B Many to Many between Student and Lesson through StudentLessons
- - - Delete Table {(usually used in the down() function
Generate a model and its migration - . (y 0) table
return queryInterface.dropTable(<TableName:); student. Js

npee sequelize-cli model:generate --name <ModelMame: --attributes <columnl:: <twpe:, ccolumnze: <tvpe:, ...

const columnMapping = {

Addlng a Gﬂlumn through: ' studentLesson',

H H H H otherkey: 'lessonId',
Run pending migrations Run all pending seeds forctabeyt ctudentad
return queryInteface.addColumny<TableName:, <columnMame:: { i .
npx sequelize-cli db:migrate npet sequelize-cli db:seesd:all type: Sequelize. ctypes, Student. belongs Toany (models . Lesson, columnMapping) ;
allowNull: <true|falses,
unigue: <true|falses, lesson.djs
Rollback one migrﬂtiﬂn Rollback one seed references: { model: <TableMame: },
const columnMapping =
15 1i db: d- d Hi through: 'ggudsntLissnn',
np sequelize-cli db:migrate:undo gz Sl=ziElatz == Edhd BEE=EEINED e
foreignkey: 'lessonId’
: = i t
RD"D&CK a" ITIIgI'ﬂtIDnS Rﬂllba{:k a" SEEdS REMDvIng a Cﬂlumn Lesson.belongsToMany{models. Student, columntapping);
X 3 return queryInterface.removecolumn{<Tablename:, ccolummnames; Deleting a single item U d t' "t
npe sequelize-cli dbimigrate:undo:all npe sequelize-cli db:seed:undo:all Anery { ! i g g p a |ng an ltem
i .) const pet = await Pet.FindeyPk{i);
Generate a new seed file "developnent s { R e o 7/ Find the pet with id = 1
"username": "root", T O s L eRo PRI A pet. destroy();] Ems T o 2
"password": null, passwords "password™, const pet = await Pet.ftindByPk{Ll;;
npx sequelize-cli seed:generate --name cdescriptivename: "database": "database_development “database”: "recipe box_development”, £
"host": "127.8.@.1" “host®: "127.8.8,1°%, i P i AR o
1. Change all of the usernames to the username "dislect': "mysql®, "dialect™: "postgres”, Deleting multiple items pet.name = “Fido, sr.
from "root" to the username that you created "operatarsaliases": false | pEEeRartOnage s SequeisIa adalt pet.save;
before: "username": "recipe_box_app" I e ff way 2
. P "test": { test”: | ayait Pet.destroyif = i
2. Change the password line to provide the ‘username": "root", "ysername™: “recipe_box_app”, wheres 1 avall pet.update(q
password for the user you created for this "password"”: null, “password”: "password”, petTypeId: 1 name: "Fide, Sr."
app: "password”: "password" "database": "database_test", _;‘:"Et_-i_tﬁf-.f'.".} "recipe_bomi_test®, 3 1y s
: "host": "12?.13_.@_.]_'_‘,.......-.-------' h-:..ﬁ["; "127.2.8,1", X H
3. Change the database line for all three) o un duE AP Vs gl "dialect®: "postgres", . Adter craating the tables with no c=gendencies, we can créate the tables that depend on ther
;anwronments (development, test, and production) } "operatorsaliases": false : "seederstorage”: "sequelize” NOTE: You do not want to creste the Ingredients or instructions table before the Recipes and | _—— -
O "database": . - o i 1 gurserate (P Inglructions modal
" . - D, "production”: { "oroduction™: { A PR s et ey
recipe_box_development"”, "database": T “ysername": "recipe_box_app®, _ T o T I e SeuEliTe-c1] nocel:gmerate |
"recipe_box_test", and "database": "password": null, *password®: “password®, For each model you ganerste, & new file will appear in your models and migrations folders m:-!".]:.:t.‘.n:l:':nc.i"jl::'.m:'.mct AT
"recipe_box_production". :ﬁa‘ci?asnf": TR EERR ERERIEEIE \CWEGRASE 5 | RN DO Jrocctin o 1o WUREIE B S R—— To generate the Measurementlnits mods!
4. Change the dialect line to "dialect": "postgres" ost: 12r.e.8.1%, S & kL Bl G2 T To gurssrale [be Ingrederils madal
" X I "dialect": "mysqgl”, "dialect®: "postgres", ; PR g e ;
5. Remove .the operatorsAliases” line woperatorsaliases"'s false "seederstorage™: "sequelize” o sequelfre.clf model:generate npx sequelize-cli model :generate
6. Add the line: "seederStorage": "sequelize" '] --famE FECIpE -name Measurementumit \
1 --attritutes title:string --attributes nameistring

findAll

await <model: . findalliq
where: o
ccolumn:: o
[Op. coperator:]: <walue:
hy
Is

include: <include specifier:,
offset: 10,
limit: =

il

findByPk

await eModel: findeyPk(<primary_kew:, o
include: <include specifier:

o

Eager loading associations with include

imple include of one related model.

await Pet.findeyPk{l, {
include: FPetType
]

Include can take an array of models if you need to include more than one,

await pPet.findeyrki(l, {
include: [Pet, COwner]
]

Include can also take an object with keys model and include
This is in case you have nested associations.

In this case Owner doesn't have an association with PetType, but
Fet does, sowe want to include PetType onto the Pet Model.

await owner.findevrPki{l, {
include: {
model: Pet
include: FPetType

[

toJSON method

The confusingly named taJ30N{) method does not retum a JSOM string but instead

returns a POJO for the instance.

Jf pet is an instance of the ret class

const pet = await Pet.findewrk{l);

console.logipet) f7 prints a giant object with

£ tons of properties and methods
S petrPOI0 is now just a plain old Javascript Object
const petPOI0 = pet.tolsoN);
console.logfpetrFoI0); /F { name: "Fido", petTypeId: 1 }

Common Where Operators

const Op = Sequelize.Op

£ (a =EB) sHD (b = E)
i fa=C0OrR a=EgE)

£ IS MULL

£ IS MOT TRUE

Ff BETWEEN & AND 1@

Ff NOT BETWEEM 11 &ND 15

AT [1, 2]

FfoMoT I [1, 2]

Ff LIKE '%hat'

£ MOT LIKE 'Zhat'

SF ILIKE '%hat' {case insensitiwve) (PG only)

S NOT ILIKE 'Xhat' (PG onlyd
S LIKE 'hat®'
Ff LIKE '%hat'

SFOLIKE 'Xhat®'

Ff REGEXPf~ '"[h]a|t]' (MySQL PG only)h

£ NOT REGEXF/ 1~ '"[h|alt]' (FMw3QL PG only)
Fio~# tolh|alt]t PG onlyd

notIregexp]: ' [h|alt]" s =% "c[h|a|t]’ (PG only)

[Op.and]: [{a: S}, {b: E}]
[Op.or]: [{a: B}, {a: E}]
[Op.gt]: &

[Op.gte]: &,

[Op.1t]: 1@,

[Op.1te]: 1&,

[Op.neg]: za,

[Op.eq]: =,

[Op.15]: null

[Op.not]: true,
[Op.between]: [&, 18],
[Op.notEBetween]: [11, 15],
(op.in]: [1, 2],
[Op.notIn]: [1, 2],
[Op.1ike]: '%hat',
[Op.notLike]: "Xhat’
[Op.iLike]: 'Hhat!
[Op.notILike]: 'Zhat!
[Op.startswith]: "hat!
[Op.endswith]: 'hat’
[Op.substring]: 'hat!
[Op.regexp]l: ‘*[h]alt]’
[Op.notRegexp]: ' [h|a]t]"
[Op.iRkegexp]: '“[h]alt]"
[Op.

[Op.1like]: { [Op.any]: ['cat', "hat']}

EQUELITE 31 LN
<STRING(1 L) Ty ABRCHAR(L 1
ire.5TRING. BINARY CHAR BINAR
11re. TEX]T Tk
re. TEXT{ 'tiny"')
iequelize. CITERT BT Postgres

wguelize. INTEGER INTEGE
equelize. BIGINT B EULNT
equelire. BIGINT{11) i,

equelize.FLOAT
equelize. FLOAT(L11)

equelize. FLOAT(11, 13 0

ieguelize, REAL RE Al Post gres)
iequelize. REAL | I
requelire.REAL{1L, 12} REAL (11,12) PostgresQL i

eguelire. DOUBLE CILIBL T
quelize, DOUBLE(11) AL E
quelize.DOUBLE(1:, 1&) / pount

]

wenuelize. DECTHAL
ieguelize.DECTHAL(1D,) L T Hi

eguelize. DATE ATETIHE 9 vegl F sqlite, FTIMESTAMP W

ieauelize. DATE(S)
redquelize. DATEONLY DATE fthout time.
enuirlize. BOOLEAN TINYINT

equelire, EHUML 'value 17, *valuye 2') ENUN wit a1l lpiwed I 51 Lie
equelize. ARRAY (Sequelize. TEXT) Oefir N &rray. Pastgr

eguelizes ARRAY [Sequelize. ENUN) Defing Tl] [TLG]

wegquelize. JS0N JEDN tgresglL; Tlite and H
imquelize. JSONE HE « e reSQL o

eauelire. BLOB BLOE (Bytea for Postgre
polelfre. ALORE "t fmv) TINYS

Migrations

In the migrations files, you want 1o make sure that you pul in any constraints on the datatypes like
string and nurmenc, by going to the type: Sequelize,STRING Of type: Sequelize.MUMERTC line and

adding parentheses, specifying the limils like this

type: Sequelire.STRING({I8D)

type: Sequeliie.WUFERIC(S,I)

You may be asked 1o mske sure null values are not sllowed for that column, you would add the

[ine
allowmell: false

To make sure that all values in the column are unigue, add the ling
unygoe: tros

To specify the column as a foreign kay (This is an example from the Ingredients table)™

references: | model: “Racipe® |

Migrate

Once you have your Migration files fixed the
way you need them, you will migrate by
running

A sequelize-cll dbomigrate
If you end up forgetting something or put in
a wrong value, you can undo your mast

recent migration OR all migrations by
funfimng

npe sequelize-cli db:migratesundo
OR

. segeelize-cli dbomigrate:undocall

Models and Associations

In your model’s files, you will specify the associations. You can have one-to-one, one-to-many, or many-to-many.

For our example, the Recipes and Instructions table have a one-to-many association, the Recipes and Instructions table have a one-to-many association, and
the MeasurementUnits and Ingredients have a on-to-many relationship.

Let's associate the Recipes and Instructions first. We will go into the Recipes model file at models/recipe.js and in the Recipe.associate file. Since the Recipes
table does not contain a foreign key, but is referenced by the Instructions table, we will call the hasMany function here:

Recipe.hasMany(models.Instruction, { foreignKey: 'recipeld' });

In plain English, you can read the above code as: "Each recipe has many instructions, and each instruction references the recipe with the foreign key
'recipeld'."

Since the Instruction model contains a foreign key referencing the Recipe model, it belongs to the Recipe model. So, in the models/instruction.js we will
associate the Instruction model to the Recipe model using the belongsTo function:

Instruction.belongsTo(models.Recipe, { foreignKey: 'recipeId' });

In plain English, you can read the above code as: "Each Instruction belongs to a recipe that is referenced by the foreign key 'recipeld'."

To set up the Recipes to Ingredients association,

In the models/recipe.js file, define the association as:

Recipe.hasMany(models.Ingredient, { foreignKey: 'recipeld' });

and in the models/ingredient.js file, define the association as:

Ingredient.belongsTo(models.Recipe, { foreignKey: 'recipeId' });

Finally, for the Ingredients to MeasurementUnits associations,

In the models/ingredient.js file, define the association as:

Ingredient.belongsTo(models.MeasurementUnit, { foreignKey: 'measurementUnitId' });

and in the models/measurementunit.js file, define the association as:
MeasurementUnit.hasMany(models.Ingredient, { foreignKey: 'measurementUnitId' });

The many to many relationship is the only one that is really different

Seeding Tables

Now we need to seed the tables, so we will go back to the terminal and generate the seed files. You will run:
npx sequelize-cli seed:generate --name recipe-seeder

You can name the seeder file anything you would like. The file with the name you gave it will appear in your seeders/ folder. We
need to open it up and put in information for each item that we want to seed into the table. NOTE: Make sure you provide the
createdAt and updatedAt values, otherwise they will be considered null, which is not allowed.

Inside of the up and down methods here, you see a comment with an "Example" in i §lThis will translate into SQL as:

t. These are extremely helpful so you don't have to memorize exactly what to do W

here. You can take these out of the comments and use them, but make sure you ché&

nge 'People’ to the table name, which should be plural_ here. ('vegetable Soup'),
['Pot Rpest'),

You will place your seed data as an array of P0JOs in the bulkInsert mgtﬁod in t ('Macaronl and Cheese'),

he up section. The up method of the Recipes seeder will look a little®like this: ('Lasagna');

Reclpes |

‘0

.bulkInsert('Reclpes .
'‘Yegetable Soup', createdA (), updatedAt

'"POt Roast', createdAt te(), updatedAt te ()
'Macaronl and Cheese', createdAt (), updatedAt
‘Lasaqna‘’, createdAt (), updatedAt ())

Accessing the Data

You can access and query the data using the findByPk, findone, and findAl1l methods. First, make sure you import the models in your JavaScript file. In this case, we are assuming your JavaScript file is in the root of your project
and so is the models folder.

const { Recipe, Ingredient, Instruction, MeasurementUnit } = require('./models');

The models folder exports each of the models that you have created. We have these four in our data model, so we will destructure the models to access each table individually. The associations that you have defined in each of
your models will allow you to access data of related tables when you query your database using the include option.

If you want to find all recipes, for the recipe list, you would use the findall method. You need to await this, so make sure your function is async.
async function findAllRecipes() {
return await Recipe.findAll();
}
If you would like to include all the ingredients so you can create a shopping list for all the recipes, you would use include. This is possible because of the association you have defined in your Recipe and Ingredient models.
async function getShoppinglList() {
return await Recipe.findAll({ include: [Ingredient] });
}
If you only want to find one where there is chicken in the ingredients list, you would use findone and findByPk.
async function findAChickenRecipe() {
const chickenRecipe = await Ingredient.findOne({
where: {
foodStuff: 'chicken’
}
1)
return await Recipe.findByPk(chickenRecipe.recipeld);

}

Data Access to Create/Update/Delete Rows

You have two options when you want to create a row in a table (where you are saving one record into the table). You can either .build the row and then .save it, or you can .create it. Either way it does the same thing. Here are
some examples:

Let's say we have a form that accepts the name of the recipe (for simplicity). When we get the results of the form, we can:
const newRecipe = await Recipe.build({ title: 'Chicken Noodle Soup' });

await newRecipe.save();

This just created our new recipe and added it to our Recipes table. You can do the same thing like this:

await Recipe.create({ title: 'Chicken Noodle Soup' });

If you want to modify an item in your table, you can use update. Let's say we want to change the chicken noodle soup to chicken noodle soup with extra veggies, first we need to get the recipe, then we can update it.

const modRecipe = await Recipe.findOne({ where: { title: 'Chicken Noodle Soup' } });

await modRecipe.update({ title: 'Chicken Noodle Soup with Extra Veggies' });

To delete an item from your table, you will do the same kind of process. Find the recipe you want to delete and destroy it, like this:
const deleteThis = await Recipe.findOne({ where: { title: 'Chicken Noodle Soup with Extra Veggies' } });

await deleteThis.destroy();

NOTE: If you do not await these, you will receive a promise, so you will need to use .then and .catch to do more with the items you are accessing and modifying.

Documentation

For the data types and validations in your models, here are the official docs. The sequelize docs are hard to look at, so these are the specific sections with just the lists:

Sequelize Data Types: hiips.//sequelize.orqg/v5/manual/data-types.html

Validations: https.//sequelize.org/v5/manual/models-definition.html#validations

When you access the data in your queries, here are the operators available, again because the docs are hard to navigate, this is the specific section with the list of operators.

Operators: https://sequelize.org/vb/manual/querying.html#operators

The documentation for building, saving, creating, updating and destroying is linked here, it does a pretty good job of explaining in my opinion, it just has a title that we have not been using in this course. When they talk about an
instance, they mean an item stored in your table.

Create/Update/Destroy: hiips.//sequelize.org/v5/manual/instances.html

https://sequelize.org/v5/manual/data-types.html
https://sequelize.org/v5/manual/models-definition.html#validations
https://sequelize.org/v5/manual/querying.html#operators
https://sequelize.org/v5/manual/instances.html

